1. bookVolume 33 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Synthesis and electrical properties of silver nanoplates for electronic applications

Published Online: 11 Jul 2015
Volume & Issue: Volume 33 (2015) - Issue 2 (June 2015)
Page range: 242 - 250
Received: 24 Jun 2014
Accepted: 23 Dec 2014
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this paper, silver nanoplates of 100 to 500 nm size were synthesized by reduction of silver nitrate with N,Ndimethylformamide, using poly(vinylpyrolidone) as a surfactant and ferric chloride as a controlling agent, at 120 to 160 °C for 5 to 24 hours. The influence of the concentration of ferric chloride, the reaction temperature and reaction time on the morphology of the product has been investigated by transmission electron microscopy, scanning electron microscopy and UV-Vis spectroscopy. The results indicated that the products obtained at the low reaction temperature and short reaction time in the presence of FeCl3 in the reaction solution were in the form of silver nanoplates, whose morphology was mainly triangular and hexagonal. In addition, the size and thickness of the nanoplates increased with increasing of the FeCl3 concentration. At a high reaction temperature and long reaction time, the truncated triangle and hexagonal nanoplates were mainly produced. Furthermore, the sintering behavior of nanoplates was studied and the results showed that sintering of the silver nanoplates started at 180 °C, and a typical sintering behavior was observed at higher temperatures. The incorporation of the silver nanoplates into the polymer matrix with micro-sized silver flakes led to an increase in the matrix resistivity in almost all cases, especially at high fractions and low curing temperatures. The curing temperature had an influence on the resistivity of the conductive adhesives filled with micro-sized silver flakes and silver nanoplates due to sintering of the silver nanoplates.

Keywords

[1] SUN Y., XIA Y., Adv. Mater., 15 (9) (2003), 695.10.1002/adma.200304652Search in Google Scholar

[2] CHEN S., CARROLL D., J. Phys. Chem. B, 108 (2004), 5500.10.1021/jp031077nSearch in Google Scholar

[3] WILEY B.J., WANG Z., WEI J., YIN Y., COBDEN D.H., XIA Y., Nano Lett., 6 (10) (2006), 2273.10.1021/nl061705n17034096Search in Google Scholar

[4] JIN R., CAO Y., MIRKIN C.A., KELLY K.L., SCHATZ G.C., ZHENG J.G., Science, 294 (2001), 1901.10.1126/science.106654111729310Search in Google Scholar

[5] KELLY K.L., CORONADO E., ZHAO L.L., SCHATZ G.C., J. Phys. Chem. B, 107 (3) (2003), 668.10.1021/jp026731ySearch in Google Scholar

[6] ZHANG J., LI S., WU J., SCHATZ G.C., MIRKIN C.A., Angew. Chem. Int. Edit., 48 (42) (2009), 7787.10.1002/anie.200903380354763219760687Search in Google Scholar

[7] BANHOLZER M.J., OSBERG K.D., LI S., MANGELSON B.F., SCHATZ G.C., MIRKIN C.A., ACS Nano, 284 (9) (2010), 5446.10.1021/nn101231u20687607Search in Google Scholar

[8] TANG B., XU S., HOU X., LI J., SUN L., XU W., WANG X., ACS Appl. Mater. Inter., 5 (3) (2013), 646.10.1021/am302072u23298387Search in Google Scholar

[9] KIM Y.K., MIN D.H., RSC Adv., 4 (14) (2014), 6950.10.1039/c3ra44280bSearch in Google Scholar

[10] YANG Y., ZHONG X.L., ZHANG Q., BLACKSTAD L.G., FU Z.W., LI Z.Y., QIN D., Small, 10 (7) (2014), 1430.10.1002/smll.20130287724339345Search in Google Scholar

[11] LI Z., MENG G., LIANG T., ZHANG Z., ZHU X., Appl. Surf. Sci., 264 (2013), 383.10.1016/j.apsusc.2012.10.031Search in Google Scholar

[12] ZHANG R.W., MOON K.S., LIN W., WONG C.P., J. Mater. Chem., 20 (2010), 2018.10.1039/b921072eSearch in Google Scholar

[13] ZHANG Z.X., CHEN X.Y., XIAO F., Polym. Advan. Technol., 25 (2011), 1465.10.1163/016942410X549924Search in Google Scholar

[14] LAI Y., PAN W., ZHANG D., ZHAN J., Nanoscale, 3 (5) (2011), 2134.10.1039/c0nr01030h21451843Search in Google Scholar

[15] ZENG J., TAO J., LI W., GRANT J., WANG P., ZHU Y., XIA Y., Chem.-Asian J., 6 (2) (2011), 376.10.1002/asia.20100072821254414Search in Google Scholar

[16] CAO Z.W., FU H.B., KANG L., HUANG L.W., ZHAI T.Y., MA Y., YAO J.N., FU H.B., J. Mater. Chem., 18 (23) (2006), 2673.10.1039/b800691aSearch in Google Scholar

[17] XIONG Y., SIEKKINEN A.R., WANG J., J. Mater. Chem., 17 (25) (2007), 2600.10.1039/b705253gSearch in Google Scholar

[18] WASHIO Y., XIONG Y., YIN Y., XIA Y., Adv. Mater., 18 (2006), 1745.10.1002/adma.200600675Search in Google Scholar

[19] WANG Y.H., ZHANG Q., WANG T., ZHOU J., Chinese J. Inorg. Chem., 26 (3) (2010), 365.Search in Google Scholar

[20] LI N., ZHANG Q., QUINLIVAN S., GOEBL J., GAN Y., YIN Y., ChemPhysChem, 13 (2012), 2526.10.1002/cphc.20110101822298378Search in Google Scholar

[21] PARK J., YOON D.-Y., KIM Y., Korean J. Chem. Eng., 26 (1) (2009), 258.10.1007/s11814-009-0043-8Search in Google Scholar

[22] ROH J., PARK E.-J., PARK K., YI J., KIM Y., J. Chem. Eng., 27 (6) (2010), 1897.10.1007/s11814-010-0299-zSearch in Google Scholar

[23] CHEN D., QIAO X., QIU X., CHEN J., JIANG R., J. Mater. Sci.-Mater. El., 22 (2011), 6.10.1007/s10854-010-0074-2Search in Google Scholar

[24] ZHANG W.C., WU X.L., CHEN H.T., GAO Y.J., ZHU J., HUANG G.S., CHU P.K., Acta Mater, 56 (1) (2008), 2508.10.1016/j.actamat.2008.01.043Search in Google Scholar

[25] ZENG J., XIA X., RYCNEGA M., HENNEGHAN P., XIA Y., Angew. Chem. Int. Edit., 50 (1) (2011), 244.10.1002/anie.20100554921038402Search in Google Scholar

[26] CHEN D., ZHU X., ZHU G., QIAO X., CHEN J., J. Mater. Sci.-Mater. El., 23 (2012), 625.10.1007/s10854-011-0455-1Search in Google Scholar

[27] IM S.H., LEE Y.T., WILEY B., XIA Y., Angew. Chem. Int. Edit., 44 (2005), 2154.10.1002/anie.20046220815739241Search in Google Scholar

[28] WANG H., ZHANG Q., WANG T., ZHOU J., Int. Mater. Rev., 22 (3) (2008), 144.Search in Google Scholar

[29] WANG Y.H., WANG T., ZHOU J., Chinese J. Inorg. Chem., 23 (8) (2007), 1485.Search in Google Scholar

[30] LI Y., MOON K.S., WONG C.P., J. Electron. Mater., 99 (2006), 1573.Search in Google Scholar

[31] CUI H.W., LI D.S., FAN Q., Electron. Mater. Lett., 9 (2013), 299.10.1007/s13391-013-2243-ySearch in Google Scholar

[32] LU D.D., LI Y.G., WONG C.P., J. Adhes. Sci. Technol., 22 (2008), 815.10.1163/156856108X305471Search in Google Scholar

[33] JIN R.C., CAO Y.C., HAO E.C., METRAUX G.S., SCHATZ G.C., MIRKIN C.A., Nature, 425 92003), 487.10.1038/nature0202014523440Search in Google Scholar

[34] SHERRY L.J., JIN R.C.,MIRKIN C.A., SCHATZ G.C., VAN DUYNE R.P., Nano Lett., 6 (9) (2006), 2060.10.1021/nl061286u16968025Search in Google Scholar

[35] HAO E., SCHATZ G., HUPP J., J. Fluoresc., 14 (4) (2004), 331.10.1023/B:JOFL.0000031815.71450.74Search in Google Scholar

[36] PASTORIZA-SANTOS I., LIZ-MARZ´A N L.M., Nano Lett., 2 (2002), 903.10.1021/nl025638iSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo