1. bookVolume 33 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Improved efficiency of dye-sensitized solar cells by doping of strontium aluminate phosphor in TiO2 photoelectrode

Published Online: 11 Jul 2015
Volume & Issue: Volume 33 (2015) - Issue 2 (June 2015)
Page range: 237 - 241
Received: 12 Jul 2014
Accepted: 15 Dec 2014
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

SrAl2O4:Eu2+, Dy3+ phosphor was synthesized by chemical solution route to use as a dopant in TiO2 layer employed as a photoelectrode for down conversion of ultraviolet and near-ultraviolet to visible and near-infrared light in a dye-sensitized solar cell. Nano-crystalline structure of the SrAl2O4:Eu2+, Dy3+ powder was confirmed by X-ray diffraction analysis and field emission scanning electron microscopy. Monitored at 520 nm, SrAl2O4:Eu2+, Dy3+ phosphor showed emission peaks at 460 to 610 nm due to 4f6 4f7 transitions of Eu2+ ions. For the study, SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer was deposited on fluorine-doped tin oxide coated glass by electrostatic spray deposition. The short circuit current, open circuit voltage, fill factor, and conversion efficiency of the cells were measured. Experimental results revealed that the device efficiency for the SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer increased to 7.20 %, whereas that of the pure-TiO2 photoelectrode was 4.13 %.

Keywords

[1] O’REGAN B., GRÄTZEL M., Nature, 353 (1991), 737.10.1038/353737a0Search in Google Scholar

[2] HE W., TIMUR A.S.H., KIM H.K., HWANG Y.H., IOP Conf.-Mater. Sci. Eng., 54 (2014), 012025.10.1088/1757-899X/54/1/012025Search in Google Scholar

[3] GRÄTZEL M., Nature, 414 (2001), 338.10.1038/35104607Search in Google Scholar

[4] HAGFELDT A., BOSCHLOO G., SUN L., KLOO L., PETTERSSON H., Chem. Rev., 110 (2010), 6595.10.1021/cr900356pSearch in Google Scholar

[5] GRÄTZEL M., Nat. Mater., 13 (2014), 838.10.1038/nmat4065Search in Google Scholar

[6] HONG C., KO H., HAN E., YUN J., PARK K., Nanoscale Res. Lett., 8 (2013), 219.10.1186/1556-276X-8-219Search in Google Scholar

[7] HE W., TIMUR A.S.H., KIM H.K., HWANG Y.H., J. Phys. Chem. C, 117 (2013), 17894.10.1021/jp307954nSearch in Google Scholar

[8] KIM S.G., KIM J.Y., KIM H.J., Thin Solid Films, 376 (2000), 110.10.1016/S0040-6090(00)01186-XSearch in Google Scholar

[9] HARANATH D., SHANKER V., CHANDER H., SHARMA P., J. Phys. D Appl. Phys., 36 (2003), 2244.10.1088/0022-3727/36/18/012Search in Google Scholar

[10] HAN C.H., LEE H.S., HAN S.D., B. Korean Chem. Soc., 29 (2008), 1495.Search in Google Scholar

[11] ESCRIBANO P., MARCHAL M., SANJUAN M.L., ALONSO-GUTIERREZ P., JULIAN B., CORDONCILLO E., J. Solid State Chem., 178 (2005), 1978.10.1016/j.jssc.2005.04.001Search in Google Scholar

[12] ZHANG R., HAN G., ZHANG L., YANG B., Mater. Chem. Phys., 113 (2009), 255.10.1016/j.matchemphys.2008.07.084Search in Google Scholar

[13] HRENIAK A., SIKORA A., IWAN A., Int. J. Mater. Chem., 4 (2014), 15.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo