This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.
In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh) in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure) decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model) increase, the axial movement (swelling movement) and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.
Data publikacji: 10 Jul 2015 Zakres stron: 19 - 22
Abstrakt
Abstract
For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called “twin-boxes”. The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.
Data publikacji: 10 Jul 2015 Zakres stron: 23 - 29
Abstrakt
Abstract
A weather data evaluation from a climate station in Lyngby, Denmark, was carried out. Twenty years of measurements show that the increase in global radiation was almost 3.5 kWh/m2 per year, corresponding to a growth of the yearly global radiation of 7 % for the last 20 years. The global radiation variation between the least sunny year to the sunniest year was 20%. The increase in diffuse radiation was 1.9 kWh/m2 per year, corresponding to 20 years’ growth of up to 7 %. The annual diffuse radiation of nearly 19 % varied from the least cloudy year to the cloudiest year. A small increase was measured for the ambient air temperature. The measurements showed a yearly increase of 0.04 K per year. The average yearly ambient air temperature variation from the coldest to the warmest year was 3.1 K. According to the seasonal growth of the parameters measured, the ambient air temperature and diffuse radiation increased the most in the summer period, while the global radiation significantly increased in the spring months. The calculations of the solar collector's thermal performance in Lyngby showed that the energy output was mostly dependent on beam radiation. The ambient air temperature did not have a high influence on the thermal performance of the solar collectors compared to the influence of the total solar radiation.
Data publikacji: 10 Jul 2015 Zakres stron: 30 - 36
Abstrakt
Abstract
The paper presents an analysis of changes in the structure of the average annual discharges, average annual air temperature, and average annual precipitation time series in Slovakia. Three time series with lengths of observation from 1961 to 2006 were analyzed. An introduction to spectral analysis with Fourier analysis (FA) is given. This method is used to determine significant periods of a time series. Later in this article a description of a wavelet transform (WT) is reviewed. This method is able to work with non-stationary time series and detect when significant periods are presented. Subsequently, models for the detection of potential changes in the structure of the time series analyzed were created with the aim of capturing changes in the cyclical components and the multiannual variability of the time series selected for Slovakia. Finally, some of the comparisons of the time series analyzed are discussed. The aim of the paper is to show the advantages of time series analysis using WT compared with FT. The results were processed in the R software environment.
This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.
In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh) in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure) decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model) increase, the axial movement (swelling movement) and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.
For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called “twin-boxes”. The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.
A weather data evaluation from a climate station in Lyngby, Denmark, was carried out. Twenty years of measurements show that the increase in global radiation was almost 3.5 kWh/m2 per year, corresponding to a growth of the yearly global radiation of 7 % for the last 20 years. The global radiation variation between the least sunny year to the sunniest year was 20%. The increase in diffuse radiation was 1.9 kWh/m2 per year, corresponding to 20 years’ growth of up to 7 %. The annual diffuse radiation of nearly 19 % varied from the least cloudy year to the cloudiest year. A small increase was measured for the ambient air temperature. The measurements showed a yearly increase of 0.04 K per year. The average yearly ambient air temperature variation from the coldest to the warmest year was 3.1 K. According to the seasonal growth of the parameters measured, the ambient air temperature and diffuse radiation increased the most in the summer period, while the global radiation significantly increased in the spring months. The calculations of the solar collector's thermal performance in Lyngby showed that the energy output was mostly dependent on beam radiation. The ambient air temperature did not have a high influence on the thermal performance of the solar collectors compared to the influence of the total solar radiation.
The paper presents an analysis of changes in the structure of the average annual discharges, average annual air temperature, and average annual precipitation time series in Slovakia. Three time series with lengths of observation from 1961 to 2006 were analyzed. An introduction to spectral analysis with Fourier analysis (FA) is given. This method is used to determine significant periods of a time series. Later in this article a description of a wavelet transform (WT) is reviewed. This method is able to work with non-stationary time series and detect when significant periods are presented. Subsequently, models for the detection of potential changes in the structure of the time series analyzed were created with the aim of capturing changes in the cyclical components and the multiannual variability of the time series selected for Slovakia. Finally, some of the comparisons of the time series analyzed are discussed. The aim of the paper is to show the advantages of time series analysis using WT compared with FT. The results were processed in the R software environment.