Otwarty dostęp

Enhancing Multi–Class Prediction of Skin Lesions with Feature Importance Assessment

, ,  oraz   
25 gru 2024

Zacytuj
Pobierz okładkę

Abbes, W., Sellami, D., Marc-Zwecker, S. and Zanni-Merk, C. (2021). Fuzzy decision ontology for melanoma diagnosis using KNN classifier, Multimedia Tools and Applications 80: 25517–25538.Search in Google Scholar

Abdelhalim, I.S.A., Mohamed, M.F. and Mahdy, Y.B. (2021). Data augmentation for skin lesion using self-attention based progressive generative adversarial network, Expert Systems with Applications 165: 113922.Search in Google Scholar

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P. and Süsstrunk, S. (2010). Slic superpixels, Technical Report 149300, Ecole Polytechnique Fédérale de Lausanne, Lausanne.Search in Google Scholar

Aladhadh, S., Alsanea, M., Aloraini, M., Khan, T., Habib, S. and Islam, M. (2022). An effective skin cancer classification mechanism via medical vision transformer, Sensors 22(11): 4008.Search in Google Scholar

Aldhyani, T.H.H., Verma, A., Al-Adhaileh, M.H. and Koundal, D. (2022). Multi-class skin lesion classification using a lightweight dynamic kernel deep-learning-based convolutional neural network, Diagnostics 12(9), Article no. 2048.Search in Google Scholar

Ali, K., Shaikh, Z.A., Khan, A.A. and Laghari, A.A. (2022). Multiclass skin cancer classification using EfficientNets—A first step towards preventing skin cancer, Neuroscience Informatics 2(4): 100034.Search in Google Scholar

Aloupogianni, E., Ishikawa, M., Kobayashi, N. and Obi, T. (2022). Hyperspectral and multispectral image processing for gross-level tumor detection in skin lesions: A systematic review, Journal of Biomedical Optics 27(06): 060901.Search in Google Scholar

Alwakid, G., Gouda, W., Humayun, M. and Sama, N.U. (2022). Melanoma detection using deep learning-based classifications, Healthcare 10(12): 2481.Search in Google Scholar

Annaby, M.H., Elwer, A.M., Rushdi, M.A. and Rasmy, M.E.M. (2021). Melanoma detection using spatial and spectral analysis on superpixel graphs, Journal of Digital Imaging 34(1): 162–181.Search in Google Scholar

Araújo, R.L., Araújo, F.H.D.d. and Silva, R.R.V.e. (2021). Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning, Multimedia Systems 28(4): 1239–1250.Search in Google Scholar

Ashraf, H., Waris, A., Ghafoor, M.F., Gilani, S.O. and Niazi, I.K. (2022). Melanoma segmentation using deep learning with test-time augmentations and conditional random fields, Scientific Reports 12(1): 3948.Search in Google Scholar

Bibi, S., Khan, M.A., Shah, J.H., Damaševičius, R., Alasiry, A., Marzougui, M., Alhaisoni, M. and Masood, A. (2023). MSRNet: Multiclass skin lesion recognition using additional residual block based fine-tuned deep models information fusion and best feature selection, Diagnostics 13(19), Article no. 3063.Search in Google Scholar

Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H. and Halpern, A. (2017). Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC), 2018 IEEE 15th International Symposium on Biomedical Imaging, Washington, USA, pp. 168–172.Search in Google Scholar

Combalia, M., Codella, N.C.F., Rotemberg, V., Helba, B., Vilaplana, V., Reiter, O., Carrera, C., Barreiro, A., Halpern, A.C., Puig, S. and Malvehy, J. (2019). BCN20000: Dermoscopic lesions in the wild, arXiv: 1908.02288.Search in Google Scholar

Damian, F.-A., Moldovanu, S. and Moraru, L. (2022). Melanoma detection using a random forest algorithm, 2022 E-Health and Bioengineering Conference (EHB), Iasi, Romania.Search in Google Scholar

Dildar, M., Akram, S., Irfan, M., Khan, H.U., Ramzan, M., Mahmood, A.R., Alsaiari, S.A., Saeed, A.H.M., Alraddadi, M.O. and Mahnashi, M.H. (2021). Skin cancer detection: A review using deep learning techniques, International Journal of Environmental Research and Public Health 18(10): 5479.Search in Google Scholar

Emery, J.D., Hunter, J., Hall, P.N., Watson, A.J., Moncrieff, M. and Walter, F.M. (2010). Accuracy of siascopy for pigmented skin lesions encountered in primary care: Development and validation of a new diagnostic algorithm, BMC Dermatology 10(1): 9.Search in Google Scholar

Gutman, D., Codella, N.C.F., Celebi, E., Helba, B., Marchetti, M., Mishra, N. and Halpern, A. (2016). Skin lesion analysis toward melanoma detection: A challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC), arXiv: 1605.01397.Search in Google Scholar

Hurtado, J. and Reales, F. (2021). A machine learning approach for the recognition of melanoma skin cancer on macroscopic images, TELKOMNIKA (Telecommunication Computing Electronics and Control) 19(4): 1357.Search in Google Scholar

Ilişanu, M.-A., Moldoveanu, F. and Moldoveanu, A. (2023). Multispectral imaging for skin diseases assessment—State of the art and perspectives, Sensors 23(8): 3888.Search in Google Scholar

Jocher, G., Chaurasia, A. and Qiu, J. (2023). Ultralytics YOLOv8, https://github.com/ultralytics/ultralytics.Search in Google Scholar

Kassem, M.A., Hosny, K.M., Damaševičius, R. and Eltoukhy, M.M. (2021). Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review, Diagnostics 11(8), Article no. 1390.Search in Google Scholar

Khan, M.A., Sharif, M.I., Raza, M., Anjum, A., Saba, T. and Shad, S.A. (2022). Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection, Expert Systems 39(7): e12497.Search in Google Scholar

Li, X., Wang, Y., Basu, S., Kumbier, K. and Yu, B. (2019). A debiased MDI feature importance measure for random forests, Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 8049–8080.Search in Google Scholar

Liutkus, J., Kriukas, A., Stragyte, D., Mazeika, E., Raudonis, V., Galetzka, W., Stang, A. and Valiukeviciene, S. (2023). Accuracy of a smartphone-based artificial intelligence application for classification of melanomas, melanocytic nevi, and seborrheic keratoses, Diagnostics 13(13): 2139.Search in Google Scholar

Mendonca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S. and Rozeira, J. (2013). Ph2—A dermoscopic image database for research and benchmarking, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, pp. 5437–5440.Search in Google Scholar

Murugan, A., Nair, S.H. and Kumar, K.P.S. (2019). Detection of skin cancer using SVM, random forest and KNN classifiers, Journal of Medical Systems 43(8): 1–9, DOI: 10.1007/s10916-019-1400-8.Search in Google Scholar

Navarrete-Dechent, C., Dusza, S.W., Liopyris, K., Marghoob, A.A., Halpern, A.C. and Marchetti, M.A. (2018). Automated dermatological diagnosis: Hype or reality?, Journal of Investigative Dermatology 138(10): 2277–2279, DOI: 10.1016/j.jid.2018.04.040.Search in Google Scholar

Oliveira, R.B., Pereira, A.S. and Tavares, J.M.R. (2017). Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation, Computer Methods and Programs in Biomedicine 149: 43–53, DOI: 10.1016/j.cmpb.2017.07.009.Search in Google Scholar

Oliveira, R.B., Pereira, A.S. and Tavares, J.M.R.S. (2018). Computational diagnosis of skin lesions from dermoscopic images using combined features, Neural Computing and Applications 31(10): 6091–6111.Search in Google Scholar

Oukil, S., Kasmi, R., Mokrani, K. and García-Zapirain, B. (2021). Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images, Skin Research and Technology 28(2): 203–211.Search in Google Scholar

Rashid, H., Tanveer, M.A. and Aqeel Khan, H. (2019). Skin lesion classification using GAN based data augmentation, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 916–919.Search in Google Scholar

Rey-Barroso, L., Burgos-Fernández, F., Delpueyo, X., Ares, M., Royo, S., Malvehy, J., Puig, S. and Vilaseca, M. (2018). Visible and extended near-infrared multispectral imaging for skin cancer diagnosis, Sensors 18(5): 1441.Search in Google Scholar

SIIM-ISIC (2020). International Skin Imaging Collaboration 2020 Challenge Dataset, https://challenge2020.isic-archive.com/.Search in Google Scholar

Sharma, G., Wu, W. and Dalal, E.N. (2004). The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations, Color Research & Application 30(1): 21–30.Search in Google Scholar

Shetty, B., Fernandes, R., Rodrigues, A.P., Chengoden, R., Bhattacharya, S. and Lakshmanna, K. (2022). Skin lesion classification of dermoscopic images using machine learning and convolutional neural network, Scientific Reports 12(1): 18134.Search in Google Scholar

Sunarya, C.A., Siswanto, J.V., Cam, G.S. and Kurniadi, F.I. (2023). Skin cancer classification using Delaunay triangulation and graph convolutional network, International Journal of Advanced Computer Science and Applications 14(6), DOI: 10.14569/IJACSA.2023.0140685.Search in Google Scholar

Surówka, G. and Ogorzałek, M. (2022). Segmentation of the melanoma lesion and its border, International Journal of Applied Mathematics and Computer Science 32(4): 683–699, DOI: 10.34768/amcs-2022-0047.Search in Google Scholar

Tembhurne, J.V., Hebbar, N., Patil, H.Y. and Diwan, T. (2023). Skin cancer detection using ensemble of machine learning and deep learning techniques, Multimedia Tools and Applications 82(18): 27501–27524.Search in Google Scholar

Tschandl, P., Rosendahl, C. and Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions, Scientific Data 5(1): 180161.Search in Google Scholar

Vikas Reddy, K. and Rama Parvathy, L. (2022). Accurate detection and classification of melanoma skin cancer using decision tree algorithm over CNN, in D.J. Hemanth et al. (Eds), Advances in Parallel Computing Algorithms, Tools and Paradigms, IOS Press, Amsterdam, pp. 321–326.Search in Google Scholar

Wang, C.-Y., Bochkovskiy, A. and Liao, H.-Y.M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, arXiv: 2207.02696.Search in Google Scholar

Wen, D., Khan, S.M., Ji Xu, A., Ibrahim, H., Smith, L., Caballero, J., Zepeda, L., de Blas Perez, C., Denniston, A.K., Liu, X. and Matin, R.N. (2022). Characteristics of publicly available skin cancer image datasets: A systematic review, The Lancet Digital Health 4(1): e64–e74.Search in Google Scholar

Winkler, J.K., Fink, C., Toberer, F., Enk, A., Deinlein, T., Hofmann-Wellenhof, R., Thomas, L., Lallas, A., Blum, A., Stolz, W. and Haenssle, H.A. (2019). Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition, JAMA Dermatology 155(10): 1135–1141.Search in Google Scholar

Zafar, M., Sharif, M.I., Sharif, M.I., Kadry, S., Bukhari, S.A.C. and Rauf, H.T. (2023). Skin lesion analysis and cancer detection based on machine/deep learning techniques: A comprehensive survey, Life 13(1): 146.Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Matematyka, Matematyka stosowana