Otwarty dostęp

An Expert System for Leukocyte Classification using Probabilistic Deep Feature Optimization via Distribution Estimation

, , , ,  oraz   
25 gru 2024

Zacytuj
Pobierz okładkę

Abdullah, E. and Turan, M.K. (2019). Classifying white blood cells using machine learning algorithms, International Journal of Engineering Research and Development 11(1): 141–152.Search in Google Scholar

Ahmad, R., Awais, M., Kausar, N. and Akram, T. (2023a). White blood cells classification using entropy-controlled deep features optimization, Diagnostics 13(3): 352–369.Search in Google Scholar

Ahmad, R., Awais, M., Kausar, N., Tariq, U., Cha, J.-H. and Balili, J. (2023b). Leukocytes classification for leukemia detection using quantum inspired deep feature selection, Cancers 15(9): 2507–2524.Search in Google Scholar

Almezhghwi, K. and Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and deep convolutional neural network, Computational Intelligence and Neuroscience 2020(01): 6490479.Search in Google Scholar

Alruwaili, M. (2021). An intelligent medical imaging approach for various blood structure classifications, Complexity 2021(01): 5573300.Search in Google Scholar

Bartlett, M.S. (1937). Properties of sufficiency and statistical tests, Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 160(901): 268–282.Search in Google Scholar

Farag, M.R. and Alagawany, M. (2018). Erythrocytes as a biological model for screening of xenobiotics toxicity, Chemico-Biological Interactions 279: 73–83.Search in Google Scholar

Gupta, D., Agrawal, U., Arora, J. and Khanna, A. (2020). Bat-inspired algorithm for feature selection and white blood cell classification, in X. Yang (Ed), Nature-Inspired Computation and Swarm Intelligence, Academic Press, Cambridge, pp. 179–197.Search in Google Scholar

He, B., Lu, Q., Lang, J., Yu, H., Peng, C., Bing, P., Li, S., Zhou, Q., Liang, Y. and Tian, G. (2020). A new method for CTC images recognition based on machine learning, Frontiers in Bioengineering and Biotechnology 8: 897–907.Search in Google Scholar

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVR), Las Vegas, USA, pp. 770–778.Search in Google Scholar

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv: 1704.04861.Search in Google Scholar

Huang, H., Wu, N., Liang, Y., Peng, X. and Shu, J. (2022). Slnl: A novel method for gene selection and phenotype classification, International Journal of Intelligent Systems 37(9): 6283–6304.Search in Google Scholar

ImageNet (2024). ImageNet project image database, http://www.image-net.org.Search in Google Scholar

Iqbal, M., Naeem, M., Ahmed, A., Awais, M., Anpalagan, A. and Ahmad, A. (2018). Swarm intelligence based resource management for cooperative cognitive radio network in smart hospitals, Wireless Personal Communications 98: 571–592.Search in Google Scholar

Jung, C., Abuhamad, M., Mohaisen, D., Han, K. and Nyang, D. (2022). WBC image classification and generative models based on convolutional neural network, BMC Medical Imaging 22(1): 1–16.Search in Google Scholar

Kandukuri, U.R., Prakash, A.J., Patro, K.K., Neelapu, B.C., Tadeusiewicz, R. and Pławiak, P. (2023). Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea, International Journal of Applied Mathematics and Computer Science 33(3): 493–506, DOI: 10.34768/amcs-2023-0036.Search in Google Scholar

Ko, B., Gim, J. and Nam, J. (2011). Cell image classification based on ensemble features and random forest, Electronics Letters 47(11): 638–639.Search in Google Scholar

Kouzehkanan, Z.M., Saghari, S., Tavakoli, S., Rostami, P., Abaszadeh, M., Mirzadeh, F., Satlsar, E.S., Gheidishahran, M., Gorgi, F., Mohammadi, S. and Hosseini, R. (2022). A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm, Scientific Reports 12(1): 1123–1137.Search in Google Scholar

Liu, J., Lin, Y., Li, Y., Weng, W. and Wu, S. (2018). Online multi-label streaming feature selection based on neighborhood rough set, Pattern Recognition 84: 273–287.Search in Google Scholar

Lu, S., Liu, S., Hou, P., Yang, B., Liu,M., Yin, L. and Zheng,W. (2023). Soft tissue feature tracking based on deep matching network, Computer Modeling in Engineering and Sciences 136(1): 363–379.Search in Google Scholar

Malik, S., Akram, T., Awais, M., Khan, M.A., Hadjouni, M., Elmannai, H., Alasiry, A., Marzougui, M. and Tariq, U. (2023). An improved skin lesion boundary estimation for enhanced-intensity images using hybrid metaheuristics, Diagnostics 13(7): 1285.Search in Google Scholar

Mathur, A., Tripathi, A.S. and Kuse,M. (2013). Scalable system for classification of white blood cells from Leishman stained blood stain images, Journal of Pathology Informatics 4(2): 15–20.Search in Google Scholar

Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement, arXiv: 1804.02767.Search in Google Scholar

Rezatofighi, S.H. and Soltanian-Zadeh, H. (2011). Automatic recognition of five types of white blood cells in peripheral blood, Computerized Medical Imaging and Graphics 35(4): 333–343.Search in Google Scholar

Sajjad, M., Khan, S., Jan, Z., Muhammad, K., Moon, H., Kwak, J.T., Rho, S., Baik, S.W. and Mehmood, I. (2017). Leukocytes classification and segmentation in microscopic blood smear: A resource-aware healthcare service in smart cities, IEEE Access 5: 3475–3489.Search in Google Scholar

Sakaguchi, K., Akimoto, K., Takaira, M., Tanaka, R.-i., Shimizu, T. and Umezu, S. (2022). Cell-based microfluidic device utilizing cell sheet technology, Cyborg and Bionic Systems 2022: 9758187.Search in Google Scholar

Sarrafzadeh, O., Rabbani, H., Talebi, A. and Banaem, H.U. (2014). Selection of the best features for leukocytes classification in blood smear microscopic images, Medical Imaging 2014: Digital Pathology, San Diego, USA, pp. 159–166.Search in Google Scholar

Shahzad, A., Raza, M., Shah, J.H., Sharif, M. and Nayak, R.S. (2022). Categorizing white blood cells by utilizing deep features of proposed 4B-additionNet-based CNN network with ant colony optimization, Complex & Intelligent Systems 8: 3143–3159.Search in Google Scholar

Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples), Biometrika 52(3–4): 591–611.Search in Google Scholar

Sharma, S., Gupta, S., Gupta, D., Juneja, S., Gupta, P., Dhiman, G. and Kautish, S. (2022). Deep learning model for the automatic classification of white blood cells, Computational Intelligence and Neuroscience 2022: 7384131.Search in Google Scholar

Su, M.-C., Cheng, C.-Y. and Wang, P.-C. (2014). A neural-network-based approach to white blood cell classification, The Scientific World Journal 2014: 796371.Search in Google Scholar

Sun, T., Lv, J., Zhao, X., Li, W., Zhang, Z. and Nie, L. (2023). In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging, Photoacoustics 34: 100569.Search in Google Scholar

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015). Going deeper with convolutions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 1–9.Search in Google Scholar

Tan, M. and Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks, Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, pp. 6105–6114.Search in Google Scholar

Tavakoli, S., Ghaffari, A., Kouzehkanan, Z.M. and Hosseini, R. (2021). New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images, Scientific Reports 11(1): 19428.Search in Google Scholar

Turner, J.R. and Thayer, J. (2001). Introduction to Analysis of Variance: Design, Analysis & Interpretation: Design, Analyis & Interpretation, Sage, Thousand Oakes.Search in Google Scholar

Weatherspoon, D. (2024). What to know about white blood cells, Medical News Today, https://www.medicalnewstoday.com/articles/327446.Search in Google Scholar

Yao, X., Sun, K., Bu, X., Zhao, C. and Jin, Y. (2021). Classification of white blood cells using weighted optimized deformable convolutional neural networks, Artificial Cells, Nanomedicine, and Biotechnology 49(1): 147–155.Search in Google Scholar

Yu, Y., Wan, M., Qian, J., Miao, D., Zhang, Z. and Zhao, P. (2024). Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets, International Journal of Approximate Reasoning 169: 109181.Search in Google Scholar

Zhang, C., Ge, H., Zhang, S., Liu, D., Jiang, Z., Lan, C., Li, L., Feng, H. and Hu, R. (2021). Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage, Neurology and Therapy 10: 1001–1013.Search in Google Scholar

Zhang, R., Tan, J., Cao, Z., Xu, L., Liu, Y., Si, L. and Sun, F. (2024). Part-aware correlation networks for few-shot learning, IEEE Transactions on Multimedia 26: 9527–9538.Search in Google Scholar

Zhu, C. (2024). Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users, Journal of Cloud Computing 13(1): 119.Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Matematyka, Matematyka stosowana