Otwarty dostęp

Parallel, multi frequency EIT measurement, suitable for recording impedance changes during epilepsy


Zacytuj

Holder DS. Electrical impedance tomography: methods, history, and applications . Institute of Physics Publishing; 2005.HolderDSElectrical impedance tomography: methods, history, and applicationsInstitute of Physics Publishing200510.1201/9781420034462.ch4Search in Google Scholar

Frerichs I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol. Meas. 2000:21(2):R1-R21. http://dx.doi.org/10.1088/0967-3334/21/2/2011084718710.1088/0967-3334/21/2/201FrerichsIElectrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activitiesPhysiol. Meas2000212R1R21http://dx.doi.org/10.1088/0967-3334/21/2/201Search in Google Scholar

Hahn G, Just A, Dudykevych T, Frerichs I, Hinz J, Quintel M, Hellige, G. Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT. Physiol. Meas. 2006:27(5):S187-S198 http://dx.doi.org/10.1088/0967-3334/27/5/S1610.1088/0967-3334/27/5/S16HahnGJustADudykevychTFrerichsIHinzJQuintelMHelligeGImaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT. PhysiolMeas2006275S187S198http://dx.doi.org/10.1088/0967-3334/27/5/S16Open DOISearch in Google Scholar

Kuen J, Woo EJ, Seo JK. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system. Physiol. Meas. 2009;30(6):S149-S164. http://dx.doi.org/10.1088/0967-3334/30/6/S1010.1088/0967-3334/30/6/S1019491441KuenJWooEJSeoJKMulti-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT systemPhysiol. Meas2009306S149S164http://dx.doi.org/10.1088/0967-3334/30/6/S10Open DOISearch in Google Scholar

Beppu T, Ishiko T, Doi K, Matsuda T, Maeda T, Ishihara K, Ogata K, Ogawa M. A promising new treatment strategy for advanced hepatocellular carcinoma –"multi-ablation therapy" consisting of radio-frequency ablation (RFA), microwave coagulation therapy (MCT) and ethanol injection therapy (EIT). Japanese J. Cancer Chemother. 2012;65(1):23-30.BeppuTIshikoTDoiKMatsudaTMaedaTIshiharaKOgataKOgawaMA promising new treatment strategy for advanced hepatocellular carcinoma –"multi-ablation therapy" consisting of radio-frequency ablation (RFA), microwave coagulation therapy (MCT) and ethanol injection therapy (EIT)Japanese J. Cancer Chemother20126512330Search in Google Scholar

You F, Shuai W, Shi X, Fu F, Liu R, Dong X. In vivo monitoring by EIT for the pig's bleeding after liver injury. IFMBE Proc. 2009. p. 110–112. http://dx.doi.org/10.1007/978-3-642-03879-2_31YouFShuaiWShiXFuFLiuRDongXIn vivo monitoring by EIT for the pig's bleeding after liver injuryIFMBE Proc2009110112http://dx.doi.org/10.1007/978-3-642-03879-2_3110.1007/978-3-642-03879-2_31Search in Google Scholar

Halter RJ, Hartov A, Paulsen KD. A broadband high-frequency electrical impedance tomography system for breast imaging. IEEE Trans. Biomed. Eng. 2008:55(2):650-659. http://dx.doi.org/10.1109/TBME.2007.903516HalterRJHartovAPaulsenKDA broadband high-frequency electrical impedance tomography system for breast imaging. IEEE TransBiomed. Eng2008552650659http://dx.doi.org/10.1109/TBME.2007.90351610.1109/TBME.2007.903516Search in Google Scholar

Holder DS. Electrical impedance tomography (EIT) of brain function. Brain Topogr. Kluwer Academic Publishers-Human Sciences Press; 1992;5(2):87-93.HolderDSElectrical impedance tomography (EIT) of brain functionBrain Topogr. Kluwer Academic Publishers-Human Sciences Press;199252879310.1007/BF01129035Search in Google Scholar

Bagshaw AP, Liston AD, Bayford RH, Tizzard A, Gibson AP, Tidswell AT, Sparkes M, Dehghani H, Binnie C, Holder S. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. Neuroimage 2003;202):752-764. http://dx.doi.org/10.1016/S1053-8119(03)00301-X1456844910.1016/S1053-8119(03)00301-XBagshawAPListonADBayfordRHTizzardAGibsonAPTidswellATSparkesMDehghaniHBinnieCHolderSElectrical impedance tomography of human brain function using reconstruction algorithms based on the finite element methodNeuroimage2003202752764http://dx.doi.org/10.1016/S1053-8119(03)00301-XSearch in Google Scholar

Holder D. Electrical impedance tomography in epilepsy. Electron. Eng. Miller Freeman plc; 1998;70(859):69–70.HolderDElectrical impedance tomography in epilepsyElectron. Eng. Miller Freeman plc;1998708596970Search in Google Scholar

Vongerichten A, Sato dos Santos G, Avery J, Walker M, Holder D. Electrical impedance tomography (EIT) of epileptic seizures in rat models – a potential new tool for diagnosis of seizures. Clin. Neurophysiol. 2014;125(supp. 1):282-283. http://dx.doi.org/10.1016/s1388-2457(14)50924-810.1016/S1388-2457(14)50924-8VongerichtenASatodos Santos GAveryJWalkerMHolderDElectrical impedance tomography (EIT) of epileptic seizures in rat models – a potential new tool for diagnosis of seizuresClin. Neurophysiol2014125supp. 1282283http://dx.doi.org/10.1016/s1388-2457(14)50924-8Open DOISearch in Google Scholar

Meinardi H, Scott RA, Reis R, On Behalf Of The Ilae Commission on JWASS. The Treatment Gap in Epilepsy: The Current Situation and Ways Forward. Epilepsia. 2001;42(1):136-149. http://dx.doi.org/10.1046/j.1528-1157.2001.32800.xMeinardiHScottRAReisROn Behalf Of The Ilae Commission on JWASS. The Treatment Gap in Epilepsy: The Current Situation and Ways ForwardEpilepsia2001421136149http://dx.doi.org/10.1046/j.1528-1157.2001.32800.x10.1046/j.1528-1157.2001.32800.x11207798Search in Google Scholar

Duncan JS. Selecting patients for epilepsy surgery: synthesis of data. Epilepsy Behav. 2011;20(2):230–232. http://dx.doi.org/10.1016/j.yebeh.2010.06.0402070960110.1016/j.yebeh.2010.06.040DuncanJSSelecting patients for epilepsy surgery: synthesis of dataEpilepsy Behav2011202230232http://dx.doi.org/10.1016/j.yebeh.2010.06.04020709601Search in Google Scholar

Aristovich KY, dos Santos GS, Packham BC, Holder DS. A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays. Physiol. Meas. 2014;35(6):2095-1109. http://dx.doi.org/10.1088/0967-3334/35/6/1095AristovichKYdosSantos GSPackhamBCHolderDSA method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arraysPhysiol. Meas201435620951109http://dx.doi.org/10.1088/0967-3334/35/6/109510.1088/0967-3334/35/6/109524845144Search in Google Scholar

Vulliemoz S, Lemieux L, Daunizeau J, Michel CM, Duncan JS. The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia. 2010;51(4):491–505. http://dx.doi.org/10.1111/j.1528-1167.2009.02342.x10.1111/j.1528-1167.2009.02342.x19817805VulliemozSLemieuxLDaunizeauJMichelCMDuncanJSThe combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networksEpilepsia2010514491505http://dx.doi.org/10.1111/j.1528-1167.2009.02342.x19817805Open DOISearch in Google Scholar

Zhao M, Suh M, Ma H, Perry C, Geneslaw A, Schwartz TH. Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy. Epilepsia. 2007;48(11):2059-2067. http://dx.doi.org/10.1111/j.1528-1167.2007.01229.x1766607110.1111/j.1528-1167.2007.01229.xZhaoMSuhMMaHPerryCGeneslawASchwartzTHFocal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsyEpilepsia2007481120592067http://dx.doi.org/10.1111/j.1528-1167.2007.01229.x17666071Search in Google Scholar

Suh M, Bahar S, Mehta AD, Schwartz TH. Temporal dependence in uncoupling of blood volume and oxygenation during interictal epileptiform events in rat neocortex. J. Neurosci. 2005;25(1):68-77. http://dx.doi.org/10.1523/JNEUROSCI.2823-04.200510.1523/JNEUROSCI.2823-04.200515634768SuhMBaharSMehtaADSchwartzTHTemporal dependence in uncoupling of blood volume and oxygenation during interictal epileptiform events in rat neocortexJ. Neurosci20052516877http://dx.doi.org/10.1523/JNEUROSCI.2823-04.2005672520415634768Open DOISearch in Google Scholar

Ahn S, Oh TI, Jun SC, Seo JK, Woo EJ. Validation of weighted frequency-difference EIT using a three-dimensional hemisphere model and phantom. Physiol. Meas. 2011;32(10):1663–1680. http://dx.doi.org/10.1088/0967-3334/32/10/0132190402210.1088/0967-3334/32/10/013AhnSOhTIJunSCSeoJKWooEJValidation of weighted frequency-difference EIT using a three-dimensional hemisphere model and phantomPhysiol. Meas2011321016631680http://dx.doi.org/10.1088/0967-3334/32/10/01321904022Search in Google Scholar

Bahar S, Suh M, Zhao M, Schwartz TH. Intrinsic optical signal imaging of neocortical seizures: the "epileptic dip". Neuroreport. 2006;27(6):499-503. http://dx.doi.org/10.1097/01.wnr.0000209010.78599.f5BaharSSuhMZhaoMSchwartzTHIntrinsic optical signal imaging of neocortical seizures: the "epileptic dip"Neuroreport2006276499503http://dx.doi.org/10.1097/01.wnr.0000209010.78599.f510.1097/01.wnr.0000209010.78599.f516543814Search in Google Scholar

McCann H, Ahsan ST, Davidson JL, Robinson RL, Wright P, Pomfrett CJD. A portable instrument for high-speed brain function imaging: FEITER. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011:7029-7032. http://dx.doi.org/10.1109/IEMBS.2011.6091777McCannHAhsanSTDavidsonJLRobinsonRLWrightPPomfrettCJDA portable instrument for high-speed brain function imaging: FEITER. Annu. Int. ConfIEEE Eng. Med. Biol. Soc201170297032http://dx.doi.org/10.1109/IEMBS.2011.609177710.1109/IEMBS.2011.609177722255957Search in Google Scholar

Wi H, Sohal H, McEwan AL, Woo EJ, Oh TI. Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans. Biomed. Circuits Syst. 2014;8(1):119-128. http://dx.doi.org/10.1109/TBCAS.2013.22567852468192510.1109/TBCAS.2013.2256785WiHSohalHMcEwanALWooEJOhTIMulti-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoringIEEE Trans. Biomed. Circuits Syst201481119128http://dx.doi.org/10.1109/TBCAS.2013.225678524681925Search in Google Scholar

Fabrizi L, Sparkes M, Horesh L, Perez-Juste Abascal JF, McEwan A, Bayford RH, Elwes R, Binnie C, Holder D. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Physiol. Meas. 2006:27(5):S163-S174. http://dx.doi.org/10.1088/0967-3334/27/5/S1410.1088/0967-3334/27/5/S1416636408FabriziLSparkesMHoreshLPerez-JusteAbascal JFMcEwanABayfordRHElwesRBinnieCHolderDFactors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humansPhysiol. Meas2006275S163S174http://dx.doi.org/10.1088/0967-3334/27/5/S1416636408Open DOISearch in Google Scholar

Liston A, Bayford R, Holder D. A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain. Med. Biol. Eng. Comput. 2012;50(5):425-437. http://dx.doi.org/10.1007/s11517-012-0901-02248466210.1007/s11517-012-0901-0ListonABayfordRHolderDA cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brainMed. Biol. Eng. Comput2012505425437http://dx.doi.org/10.1007/s11517-012-0901-022484662Search in Google Scholar

Rao, A, Gibson. A.P., Holder DS. EIT images of electrically induced epileptic activity in anaesthetised rabbits. Med. Biol. Eng. Comput. 1997;35(1):327.RaoAGibsonA.P.HolderDSEIT images of electrically induced epileptic activity in anaesthetised rabbitsMed. Biol. Eng. Comput1997351327Search in Google Scholar

Fabrizi L, Yerworth R, McEwan A, Gilad O, Bayford R, Holder DS. A method for removing artefacts from continuous EEG recordings during functional electrical impedance tomography for the detection of epileptic seizures. Physiol. Meas. 2010;31(8):S57-S72. http://dx.doi.org/10.1088/0967-3334/31/8/S0510.1088/0967-3334/31/8/S0520647617FabriziLYerworthRMcEwanAGiladOBayfordRHolderDSA method for removing artefacts from continuous EEG recordings during functional electrical impedance tomography for the detection of epileptic seizuresPhysiol. Meas2010318S57S72http://dx.doi.org/10.1088/0967-3334/31/8/S0520647617Open DOISearch in Google Scholar

Granot Y, Ivorra A, Rubinsky B. Frequency-division multiplexing for electrical impedance tomography in biomedical applications. Int. J. Biomed. Imaging. 2007;2007:1-9.GranotYIvorraARubinskyBFrequency-division multiplexing for electrical impedance tomography in biomedical applicationsInt. J. Biomed. Imaging200720071910.1155/2007/54798221141718274653Search in Google Scholar

Gracia J, Seppa VP, Viik J, Hyttinen J. Multilead measurement system for the time-domain analysis of bioimpedance magnitude. IEEE Trans. Biomed. Eng. 2012;59(8):2273-2280. http://dx.doi.org/10.1109/TBME.2012.22023182269286310.1109/TBME.2012.2202318GraciaJSeppaVPViikJHyttinenJMultilead measurement system for the time-domain analysis of bioimpedance magnitudeIEEE Trans. Biomed. Eng201259822732280http://dx.doi.org/10.1109/TBME.2012.220231822692863Search in Google Scholar

McEwan A, Tapson J, van Schaik A, Holder DS. Code-division-multiplexed electrical impedance tomography spectroscopy. IEEE Trans. Biomed. Circuits Syst. 2009;3(5):332-338. http://dx.doi.org/10.1109/TBCAS.2009.203215910.1109/TBCAS.2009.203215923853272McEwanATapsonJvan SchaikAHolderDSCode-division-multiplexed electrical impedance tomography spectroscopyIEEE Trans. Biomed. Circuits Syst200935332338http://dx.doi.org/10.1109/TBCAS.2009.203215923853272Open DOISearch in Google Scholar

Tucker AS, Fox RM, Sadleir RJ. Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation. IEEE Trans. Biomed. Circuits Syst. 2013;7(1):63-70. http://dx.doi.org/10.1109/TBCAS.2012.21991142385328010.1109/TBCAS.2012.2199114TuckerASFoxRMSadleirRJBiocompatible, high precision, wideband, improved Howland current source with lead-lag compensationIEEE Trans. Biomed. Circuits Syst2013716370http://dx.doi.org/10.1109/TBCAS.2012.219911423853280Search in Google Scholar

Vauhkonen M, Vadâsz D, Karjalainen PA, Somersalo E, Kaipio JP. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Imaging . 1998;17(2):285-293. http://dx.doi.org/10.1109/42.70074010.1109/42.7007409688160VauhkonenMVadâszDKarjalainenPASomersaloEKaipioJPTikhonov regularization and prior information in electrical impedance tomographyIEEE Trans. Med. Imaging1998172285293http://dx.doi.org/10.1109/42.7007409688160Open DOISearch in Google Scholar

Vongerichten A. Imaging Physiological and Pathological Activity in the Brain using Electric Impedance Tomography. PhD thesis, UCL, 2014.VongerichtenA.Imaging Physiological and Pathological Activity in the Brain using Electric Impedance Tomography. PhD thesis, UCL2014Search in Google Scholar

Schuettler M, Ordonez JS, Henle C, Oh D, Gilad O, Holder DS. A Flexible 29 Channel Epicortical Electrode Array. IFESS 2008 - 13th Annu. Int. FES Soc. Conf. 2008.SchuettlerMOrdonezJSHenleCOhDGiladOHolderDSA Flexible 29 Channel Epicortical Electrode Array. IFESS 2008 - 13th AnnuInt. FES Soc. Conf2008Search in Google Scholar