Zacytuj

Achal V., X. Pan and D. Zhang. 2012. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere. 89: 764–768.AchalV.X.Pan and D.Zhang2012Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas spChemosphere8976476810.1016/j.chemosphere.2012.06.064Search in Google Scholar

Agrawal L.K., Y. Ohashi, E. Mochida, H. Okui, Y. Ueki, H. Harada and A. Ohashi. 1997. Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Wat. Sci. Tech. 36: 433–440.AgrawalL.K.Y.OhashiE.MochidaH.OkuiY.UekiH.Harada and A.Ohashi1997Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes processWat. Sci. Tech3643344010.2166/wst.1997.0620Search in Google Scholar

Amann R.I., B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux and D.A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919–1925.AmannR.I.B.J.BinderR.J.OlsonS.W.ChisholmR.Devereux and D.A.Stahl1990Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populationsAppl. Environ. Microbiol561919192510.1128/aem.56.6.1919-1925.1990Search in Google Scholar

Anbu P., C.-H. Kang, Y.-J. Shin and J.-S. So. 2016. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus. 5: 250.AnbuP.C.-H.KangY.-J.Shin and J.-S.So2016Formations of calcium carbonate minerals by bacteria and its multiple applicationsSpringerPlus525010.1186/s40064-016-1869-2Search in Google Scholar

Cheng L. and R. Cord-Ruwisch. 2013. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture. J. Ind. Microbiol. Biotechnol. 40: 1095–1104.ChengL. and R.Cord-Ruwisch2013Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat cultureJ. Ind. Microbiol. Biotechnol401095110410.1007/s10295-013-1310-6Search in Google Scholar

Daims H., A. Brühl, R. Amann, K.-H. Schleifer and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434–444.DaimsH.A.BrühlR.AmannK.-H.Schleifer and M.Wagner1999The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe setSyst. Appl. Microbiol2243444410.1016/S0723-2020(99)80053-8Search in Google Scholar

Dhami N.K., M.S. Reddy and A. Mukherjee. 2013. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotechnol. 23: 707–714.DhamiN.K.M.S.Reddy and A.Mukherjee2013Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sitesJ. Microbiol. Biotechnol2370771410.4014/jmb.1212.1108723648862Search in Google Scholar

Dupraz C., R.P. Reid, O. Braissant, A.W. Decho, R.S. Norman and P.T. Visscher. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96: 141–162.DuprazC.R.P.ReidO.BraissantA.W.DechoR.S.Norman and P.T.Visscher2009Processes of carbonate precipitation in modern microbial matsEarth-Sci. Rev9614116210.1016/j.earscirev.2008.10.005Search in Google Scholar

Gat D., Z. Ronen and M. Tsesarsky. 2016. Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO3 precipitation. Environ. Sci. Technol. 50: 616–624.GatD.Z.Ronen and M.Tsesarsky2016Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO3 precipitationEnviron. Sci. Technol5061662410.1021/acs.est.5b0403326689904Search in Google Scholar

Hammes F., N. Boon, J. de Villiers, W. Verstraete and S.D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901–4909.HammesF.N.BoonJ.de VilliersW.Verstraete and S.D.Siciliano2003Strain-specific ureolytic microbial calcium carbonate precipitationAppl. Environ. Microbiol694901490910.1128/AEM.69.8.4901-4909.200316913912902285Search in Google Scholar

Harkes M.P., L.A. van Paassen, J.L. Booster, V.S. Whiffin and M.C.M. van Loosdrecht. 2010. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 36: 112–117.HarkesM.P.L.A.van PaassenJ.L.BoosterV.S.Whiffin and M.C.M.van Loosdrecht2010Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcementEcol. Eng3611211710.1016/j.ecoleng.2009.01.004Search in Google Scholar

Kang C.-H., Y. Shin, P. Anbu, I.-H. Nam and J.-S. So. 2016. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation. J. Gen. Appl. Microbiol. 62: 206–212.KangC.-H.Y.ShinP.AnbuI.-H.Nam and J.-S.So2016Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitationJ. Gen. Appl. Microbiol6220621210.2323/jgam.2016.03.001Search in Google Scholar

Li M., X. Cheng and H. Guo. 2013. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegradation. 76: 81–85.LiM.X.Cheng and H.Guo2013Heavy metal removal by biomineralization of urease producing bacteria isolated from soilInt. Biodeterior. Biodegradation76818510.1016/j.ibiod.2012.06.016Search in Google Scholar

Meier H., R. Amann, W. Ludwig and K.H. Schleifer. 1999. Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol. 22: 186–196.MeierH.R.AmannW.Ludwig and K.H.Schleifer1999Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C contentSyst. Appl. Microbiol2218619610.1016/S0723-2020(99)80065-4Search in Google Scholar

Mobley H.L.T. and R.P. Hausinger. 1989. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev. 53: 85–108.MobleyH.L.T. and R.P.Hausinger1989Microbial ureases: significance, regulation, and molecular characterizationMicrobiol. Rev538510810.1128/mr.53.1.85-108.19893727182651866Search in Google Scholar

Onodera T., K. Matsunaga, K. Kubota, R. Taniguchi, H. Harada, K. Syutsubo, T. Okubo, S. Uemura, N. Araki, M. Yamada and others. 2013. Characterization of the retained sludge in a down-flow hanging sponge (DHS) reactor with emphasis on its low excess sludge production. Bioresour. Technol. 136: 169–175.OnoderaT.K.MatsunagaK.KubotaR.TaniguchiH.HaradaK.SyutsuboT.OkuboS.UemuraN.ArakiM.Yamadaand others2013Characterization of the retained sludge in a down-flow hanging sponge (DHS) reactor with emphasis on its low excess sludge productionBioresour. Technol13616917510.1016/j.biortech.2013.02.09623567678Search in Google Scholar

Snaidr J., R. Amann, I. Huber, W. Ludwig and K.-H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63: 2884–2896.SnaidrJ.R.AmannI.HuberW.Ludwig and K.-H.Schleifer1997Phylogenetic analysis and in situ identification of bacteria in activated sludgeAppl. Environ. Microbiol632884289610.1128/aem.63.7.2884-2896.19971685849212435Search in Google Scholar

Tandukar M., A. Ohashi and H. Harada. 2007. Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. Water Res. 41: 2697–2705.TandukarM.A.Ohashi and H.Harada2007Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewaterWater Res412697270510.1016/j.watres.2007.02.02717418365Search in Google Scholar

Uemura S. and H. Harada. 2010. Application of UASB technology for sewage treatment with a novel post-treatment process, pp. 91–112. In: Fang H.H.P. (ed). Environmental Anaerobic Technology, Applications and New Developments. Imperial College Press, London, UK.UemuraS. and H.Harada2010Application of UASB technology for sewage treatment with a novel post-treatment process,pp. 91112.In:FangH.H.P.(ed).Environmental Anaerobic Technology, Applications and New DevelopmentsImperial College PressLondon, UK10.1142/9781848165434_0005Search in Google Scholar

Vahabi A., A.A. Ramezanianpour, H. Sharafi, H.S. Zahiri, H. Vali and K.A. Noghabi. 2013. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J. Basic. Microbiol. 55: 105–111.VahabiA.A.A.RamezanianpourH.SharafiH.S.ZahiriH.Vali and K.A.Noghabi2013Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materialsJ. Basic. Microbiol55105111Search in Google Scholar

Wei S., H. Cui, Z. Jiang, H. Liu, H. He and N. Fang. 2015. Biominexralization processes of calcite induced by bacteria isolated from marine sediments. Braz. J. Microbiol. 46: 455–464.WeiS.H.CuiZ.JiangH.LiuH.He and N.Fang2015Biominexralization processes of calcite induced by bacteria isolated from marine sedimentsBraz. J. Microbiol4645546410.1590/S1517-838246220140533450753726273260Search in Google Scholar

Whiffin V.S. 2004. PhD Thesis. Microbial CaCO3 precipitation for the production of biocement. Murdoch University, Western Australia, Australia.WhiffinV.S.2004PhD ThesisMicrobial CaCO3 precipitation for the production of biocementMurdoch UniversityWestern Australia, AustraliaSearch in Google Scholar

Zhu T. and M. Dittrich. 2016. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front. Bioeng. Biotechnol. 4:4.ZhuT. and M.Dittrich2016Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a reviewFront. Bioeng. Biotechnol.44Search in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology