Zacytuj

Chiurchiù V, Leuti A, Maccarrone M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front Immunol 2018;9:38. ChiurchiùV LeutiA MaccarroneM Bioactive Lipids and Chronic Inflammation: Managing the Fire Within Front Immunol 2018 9 38 10.3389/fimmu.2018.00038 Search in Google Scholar

Jiang S, Xiao H, Wu Z et al. NLRP3 sparks the Greek fire in the war against lipid-related diseases. Obes Rev 2020;21:e13045. JiangS XiaoH WuZ NLRP3 sparks the Greek fire in the war against lipid-related diseases Obes Rev 2020 21 e13045 10.1111/obr.13045 Search in Google Scholar

Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002;10:417–26. MartinonF BurnsK TschoppJ The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta Mol Cell 2002 10 417 26 10.1016/S1097-2765(02)00599-3 Search in Google Scholar

Jaén RI, Val-Blasco A, Prieto P et al. Innate Immune Receptors, Key Actors in Cardiovascular Diseases. JACC Basic Transl Sci 2020;5:735–749. JaénRI Val-BlascoA PrietoP Innate Immune Receptors, Key Actors in Cardiovascular Diseases JACC Basic Transl Sci 2020 5 735 749 10.1016/j.jacbts.2020.03.015739340532760860 Search in Google Scholar

Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016; 16:35–50. CaoX Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease Nat Rev Immunol 2016 16 35 50 10.1038/nri.2015.826711677 Search in Google Scholar

Kim YK, Shin JS, Nahm MH. NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med J 2016;57:5–14. KimYK ShinJS NahmMH NOD-Like Receptors in Infection, Immunity, and Diseases Yonsei Med J 2016 57 5 14 10.3349/ymj.2016.57.1.5469697126632377 Search in Google Scholar

Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ Res 2020;126:1260–1280. AbbateA ToldoS MarchettiC KronJ Van TassellBW DinarelloCA Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease Circ Res 2020 126 1260 1280 10.1161/CIRCRESAHA.120.315937876062832324502 Search in Google Scholar

Wang Z, Hu W, Lu C et al. Targeting NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome in Cardiovascular Disorders. Arterioscler Thromb Vasc Biol 2018;38:2765–2779. WangZ HuW LuC Targeting NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome in Cardiovascular Disorders Arterioscler Thromb Vasc Biol 2018 38 2765 2779 10.1161/ATVBAHA.118.31191630571177 Search in Google Scholar

Bai B, Yang Y, Wang Q et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020;11:776. BaiB YangY WangQ NLRP3 inflammasome in endothelial dysfunction Cell Death Dis 2020 11 776 10.1038/s41419-020-02985-x750126232948742 Search in Google Scholar

Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging Activators and Regulators of Inflammasomes and Pyroptosis. Trends Immunol 2019;40:1035–1052. XueY Enosi TuipulotuD TanWH KayC ManSM Emerging Activators and Regulators of Inflammasomes and Pyroptosis Trends Immunol 2019 40 1035 1052 10.1016/j.it.2019.09.00531662274 Search in Google Scholar

Franchi L, Núñez G. Immunology. Orchestrating inflammasomes. Science 2012;337:1299–300. FranchiL NúñezG Immunology. Orchestrating inflammasomes Science 2012 337 1299 300 10.1126/science.1229010434047622984056 Search in Google Scholar

Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol 2018;15:203–214. ToldoS AbbateA The NLRP3 inflammasome in acute myocardial infarction Nat Rev Cardiol 2018 15 203 214 10.1038/nrcardio.2017.16129143812 Search in Google Scholar

Zhou W, Chen C, Chen Z et al. NLRP3: A Novel Mediator in Cardiovascular Disease. J Immunol Res 2018;2018:5702103. ZhouW ChenC ChenZ NLRP3: A Novel Mediator in Cardiovascular Disease J Immunol Res 2018 2018 5702103 10.1155/2018/5702103591133929850631 Search in Google Scholar

Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 2010;8:471–83. BrozP von MoltkeJ JonesJW VanceRE MonackDM Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing Cell Host Microbe 2010 8 471 83 10.1016/j.chom.2010.11.007301620021147462 Search in Google Scholar

Ratajczak MZ, Bujko K, Ciechanowicz A et al. SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45(−) Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome. Stem Cell Rev Rep 2021;17:266–277. RatajczakMZ BujkoK CiechanowiczA SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45(−) Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome Stem Cell Rev Rep 2021 17 266 277 10.1007/s12015-020-10010-z737087232691370 Search in Google Scholar

Döring Y, Libby P, Soehnlein O. Neutrophil Extracellular Traps Participate in Cardiovascular Diseases: Recent Experimental and Clinical Insights. Circ Res 2020;126:1228–1241. DöringY LibbyP SoehnleinO Neutrophil Extracellular Traps Participate in Cardiovascular Diseases: Recent Experimental and Clinical Insights Circ Res 2020 126 1228 1241 10.1161/CIRCRESAHA.120.315931718504732324499 Search in Google Scholar

Liu D, Zeng X, Li X, Mehta JL, Wang X. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol 2018;113:5. LiuD ZengX LiX MehtaJL WangX Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases Basic Res Cardiol 2018 113 5 10.1007/s00395-017-0663-929224086 Search in Google Scholar

Bauernfeind FG, Horvath G, Stutz A et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009;183:787–91. BauernfeindFG HorvathG StutzA Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression J Immunol 2009 183 787 91 10.4049/jimmunol.0901363282485519570822 Search in Google Scholar

He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci 2016;41:1012–1021. HeY HaraH NúñezG Mechanism and Regulation of NLRP3 Inflammasome Activation Trends Biochem Sci 2016 41 1012 1021 10.1016/j.tibs.2016.09.002512393927669650 Search in Google Scholar

An N, Gao Y, Si Z et al. Regulatory Mechanisms of the NLRP3 Inflammasome, a Novel Immune-Inflammatory Marker in Cardiovascular Diseases. Front Immunol 2019;10:1592. AnN GaoY SiZ Regulatory Mechanisms of the NLRP3 Inflammasome, a Novel Immune-Inflammatory Marker in Cardiovascular Diseases Front Immunol 2019 10 1592 10.3389/fimmu.2019.01592663588531354731 Search in Google Scholar

Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 2019;10:128. YangY WangH KouadirM SongH ShiF Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors Cell Death Dis 2019 10 128 10.1038/s41419-019-1413-8637266430755589 Search in Google Scholar

Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 2015;265:35–52. ElliottEI SutterwalaFS Initiation and perpetuation of NLRP3 inflammasome activation and assembly Immunol Rev 2015 265 35 52 10.1111/imr.12286440087425879282 Search in Google Scholar

Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 2019;26:99–114. FrankD VinceJE Pyroptosis versus necroptosis: similarities, differences, and crosstalk Cell Death Differ 2019 26 99 114 10.1038/s41418-018-0212-6629477930341423 Search in Google Scholar

Libby P, Everett BM. Novel Antiatherosclerotic Therapies. Arterioscler Thromb Vasc Biol 2019;39:538–545. LibbyP EverettBM Novel Antiatherosclerotic Therapies Arterioscler Thromb Vasc Biol 2019 39 538 545 10.1161/ATVBAHA.118.310958643698430816799 Search in Google Scholar

Bortolotti P, Faure E, Kipnis E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front Immunol 2018;9:1900. BortolottiP FaureE KipnisE Inflammasomes in Tissue Damages and Immune Disorders After Trauma Front Immunol 2018 9 1900 10.3389/fimmu.2018.01900610570230166988 Search in Google Scholar

Schunk SJ, Kleber ME, März W et al. Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. Eur Heart J 2021;42:1742–1756. SchunkSJ KleberME MärzW Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality Eur Heart J 2021 42 1742 1756 10.1093/eurheartj/ehab107824463833748830 Search in Google Scholar

Duewell P, Kono H, Rayner KJ et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010;464:1357–61. DuewellP KonoH RaynerKJ NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals Nature 2010 464 1357 61 10.1038/nature08938294664020428172 Search in Google Scholar

Sheedy FJ, Grebe A, Rayner KJ et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013;14:812–20. SheedyFJ GrebeA RaynerKJ CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation Nat Immunol 2013 14 812 20 10.1038/ni.2639372082723812099 Search in Google Scholar

Shi J, Zhao Y, Wang K et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015;526:660–5. ShiJ ZhaoY WangK Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death Nature 2015 526 660 5 10.1038/nature1551426375003 Search in Google Scholar

Afrasyab A, Qu P, Zhao Y et al. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart Vessels 2016;31:1218–29. AfrasyabA QuP ZhaoY Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients Heart Vessels 2016 31 1218 29 10.1007/s00380-015-0723-826290166 Search in Google Scholar

Bando S, Fukuda D, Soeki T et al. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis 2015;242:407–14. BandoS FukudaD SoekiT Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis Atherosclerosis 2015 242 407 14 10.1016/j.atherosclerosis.2015.07.043 Search in Google Scholar

Zheng F, Xing S, Gong Z, Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ 2013;22:746–50. ZhengF XingS GongZ XingQ NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis Heart Lung Circ 2013 22 746 50 10.1016/j.hlc.2013.01.012 Search in Google Scholar

Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65:1454–71. IbáñezB HeuschG OvizeM Van de WerfF Evolving therapies for myocardial ischemia/reperfusion injury J Am Coll Cardiol 2015 65 1454 71 10.1016/j.jacc.2015.02.032 Search in Google Scholar

Kong F, Ye B, Lin L, Cai X, Huang W, Huang Z. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes. Biomed Pharmacother 2016;82:167–72. KongF YeB LinL CaiX HuangW HuangZ Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes Biomed Pharmacother 2016 82 167 72 10.1016/j.biopha.2016.04.043 Search in Google Scholar

Wu LM, Wu SG, Chen F et al. Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells. Atherosclerosis 2020;293:26–34. WuLM WuSG ChenF Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells Atherosclerosis 2020 293 26 34 10.1016/j.atherosclerosis.2019.11.033 Search in Google Scholar

Robertson S, Martínez GJ, Payet CA et al. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond) 2016;130:1237–46. RobertsonS MartínezGJ PayetCA Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation Clin Sci (Lond) 2016 130 1237 46 10.1042/CS20160090 Search in Google Scholar

Karasawa T, Takahashi M. Role of NLRP3 Inflammasomes in Atherosclerosis. J Atheroscler Thromb 2017;24:443–451. KarasawaT TakahashiM Role of NLRP3 Inflammasomes in Atherosclerosis J Atheroscler Thromb 2017 24 443 451 10.5551/jat.RV17001 Search in Google Scholar

van Hout GP, Arslan F, Pasterkamp G, Hoefer IE. Targeting danger-associated molecular patterns after myocardial infarction. Expert Opin Ther Targets 2016;20:223–39. van HoutGP ArslanF PasterkampG HoeferIE Targeting danger-associated molecular patterns after myocardial infarction Expert Opin Ther Targets 2016 20 223 39 10.1517/14728222.2016.1088005 Search in Google Scholar

van Hout GP, Bosch L, Ellenbroek GH et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 2017;38:828–836. van HoutGP BoschL EllenbroekGH The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction Eur Heart J 2017 38 828 836 10.1093/eurheartj/ehw247 Search in Google Scholar

Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 2018;391:319–328. RidkerPM MacFadyenJG EverettBM LibbyP ThurenT GlynnRJ Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial Lancet 2018 391 319 328 10.1016/S0140-6736(17)32814-3 Search in Google Scholar

Satish M, Agrawal DK. Atherothrombosis and the NLRP3 inflammasome - endogenous mechanisms of inhibition. Transl Res 2020; 215:75–85. SatishM AgrawalDK Atherothrombosis and the NLRP3 inflammasome - endogenous mechanisms of inhibition Transl Res 2020 215 75 85 10.1016/j.trsl.2019.08.003 Search in Google Scholar

De Miguel C, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 2015;17:507. De MiguelC RudemillerNP AbaisJM MattsonDL Inflammation and hypertension: new understandings and potential therapeutic targets Curr Hypertens Rep 2015 17 507 10.1007/s11906-014-0507-z Search in Google Scholar

Solak Y, Afsar B, Vaziri ND et al. Hypertension as an autoimmune and inflammatory disease. Hypertens Res 2016;39:567–73. SolakY AfsarB VaziriND Hypertension as an autoimmune and inflammatory disease Hypertens Res 2016 39 567 73 10.1038/hr.2016.35 Search in Google Scholar

Mian MO, Paradis P, Schiffrin EL. Innate immunity in hypertension. Curr Hypertens Rep 2014;16:413. MianMO ParadisP SchiffrinEL Innate immunity in hypertension Curr Hypertens Rep 2014 16 413 10.1007/s11906-013-0413-9 Search in Google Scholar

Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens 2005;19:149–54. BautistaLE VeraLM ArenasIA GamarraG Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension J Hum Hypertens 2005 19 149 54 10.1038/sj.jhh.1001785 Search in Google Scholar

Krishnan SM, Dowling JK, Ling YH et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol 2016;173:752–65. KrishnanSM DowlingJK LingYH Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice Br J Pharmacol 2016 173 752 65 10.1111/bph.13230 Search in Google Scholar

Dalekos GN, Elisaf M, Bairaktari E, Tsolas O, Siamopoulos KC. Increased serum levels of interleukin-1beta in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med 1997;129:300–8. DalekosGN ElisafM BairaktariE TsolasO SiamopoulosKC Increased serum levels of interleukin-1beta in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med 1997 129 300 8 10.1016/S0022-2143(97)90178-5 Search in Google Scholar

Chen H, Lu ZZ, Wei H, Han C. Induction of ICE and inhibition of c-fos, jun D and zif 268 in 12-month old spontaneously hypertensive rats. Life Sci 1997;61:Pl27–31. ChenH LuZZ WeiH HanC Induction of ICE and inhibition of c-fos, jun D and zif 268 in 12-month old spontaneously hypertensive rats Life Sci 1997 61 Pl27 31 10.1016/S0024-3205(97)00377-9 Search in Google Scholar

Vilaysane A, Chun J, Seamone ME et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 2010;21:1732–44. VilaysaneA ChunJ SeamoneME The NLRP3 inflammasome promotes renal inflammation and contributes to CKD J Am Soc Nephrol 2010 21 1732 44 10.1681/ASN.2010020143301354420688930 Search in Google Scholar

Omi T, Kumada M, Kamesaki T et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet 2006;14:1295–305. OmiT KumadaM KamesakiT An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension Eur J Hum Genet 2006 14 1295 305 10.1038/sj.ejhg.520169816868559 Search in Google Scholar

Qi J, Yu XJ, Shi XL et al. NF-κB Blockade in Hypothalamic Paraventricular Nucleus Inhibits High-Salt-Induced Hypertension Through NLRP3 and Caspase-1. Cardiovasc Toxicol 2016;16:345–54. QiJ YuXJ ShiXL NF-κB Blockade in Hypothalamic Paraventricular Nucleus Inhibits High-Salt-Induced Hypertension Through NLRP3 and Caspase-1 Cardiovasc Toxicol 2016 16 345 54 10.1007/s12012-015-9344-926438340 Search in Google Scholar

Tang B, Chen GX, Liang MY, Yao JP, Wu ZK. Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. Int J Cardiol 2015;180:134–41. TangB ChenGX LiangMY YaoJP WuZK Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats Int J Cardiol 2015 180 134 41 10.1016/j.ijcard.2014.11.16125438234 Search in Google Scholar

Socha MW, Malinowski B, Puk O, Dubiel M, Wiciński M. The NLRP3 Inflammasome Role in the Pathogenesis of Pregnancy Induced Hypertension and Preeclampsia. Cells 2020;9. SochaMW MalinowskiB PukO DubielM WicińskiM The NLRP3 Inflammasome Role in the Pathogenesis of Pregnancy Induced Hypertension and Preeclampsia Cells 2020 9 10.3390/cells9071642740720532650532 Search in Google Scholar

Krishnan SM, Ling YH, Huuskes BM et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res 2019;115:776–787. KrishnanSM LingYH HuuskesBM Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension Cardiovasc Res 2019 115 776 787 10.1093/cvr/cvy252643206530357309 Search in Google Scholar

Ding S, Xu S, Ma Y, Liu G, Jang H, Fang J. Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules 2019;9. DingS XuS MaY LiuG JangH FangJ Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes Biomolecules 2019 9 10.3390/biom9120850699552331835423 Search in Google Scholar

Liu H, Xu R, Kong Q, Liu J, Yu Z, Zhao C. Downregulated NLRP3 and NLRP1 inflammasomes signaling pathways in the development and progression of type 1 diabetes mellitus. Biomed Pharmacother 2017;94:619–626. LiuH XuR KongQ LiuJ YuZ ZhaoC Downregulated NLRP3 and NLRP1 inflammasomes signaling pathways in the development and progression of type 1 diabetes mellitus Biomed Pharmacother 2017 94 619 626 10.1016/j.biopha.2017.07.10228783585 Search in Google Scholar

Birnbaum Y, Bajaj M, Qian J, Ye Y. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care 2016; 4:e000227. BirnbaumY BajajM QianJ YeY Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome BMJ Open Diabetes Res Care 2016 4 e000227 10.1136/bmjdrc-2016-000227498583427547413 Search in Google Scholar

Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol Metab 2016;5:771–81. BurcelinR Gut microbiota and immune crosstalk in metabolic disease Mol Metab 2016 5 771 81 10.1016/j.molmet.2016.05.016500416727617200 Search in Google Scholar

Lebreton F, Berishvili E, Parnaud G et al. NLRP3 inflammasome is expressed and regulated in human islets. Cell Death Dis 2018;9:726. LebretonF BerishviliE ParnaudG NLRP3 inflammasome is expressed and regulated in human islets Cell Death Dis 2018 9 726 10.1038/s41419-018-0764-x601815629941940 Search in Google Scholar

Dror E, Dalmas E, Meier DT et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 2017;18:283–292. DrorE DalmasE MeierDT Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation Nat Immunol 2017 18 283 292 10.1038/ni.365928092375 Search in Google Scholar

Huang Y, Xu M, Hong J, Gu W, Bi Y, Li X. -607 C/A polymorphism in the promoter of IL-18 gene is associated with 2 h post-loading plasma glucose level in Chinese. Endocrine 2010;37:507–12. HuangY XuM HongJ GuW BiY LiX -607 C/A polymorphism in the promoter of IL-18 gene is associated with 2 h post-loading plasma glucose level in Chinese Endocrine 2010 37 507 12 10.1007/s12020-010-9338-020960175 Search in Google Scholar

Esser N, L’Homme L, De Roover A et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 2013;56:2487–97. EsserN L’HommeL De RooverA Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue Diabetologia 2013 56 2487 97 10.1007/s00125-013-3023-924013717 Search in Google Scholar

Vandanmagsar B, Youm YH, Ravussin A et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011;17:179–88. VandanmagsarB YoumYH RavussinA The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance Nat Med 2011 17 179 88 10.1038/nm.2279307602521217695 Search in Google Scholar

Van Tassell BW, Arena RA, Toldo S et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One 2012;7:e33438. Van TassellBW ArenaRA ToldoS Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure PLoS One 2012 7 e33438 10.1371/journal.pone.0033438330639322438931 Search in Google Scholar

Butts B, Gary RA, Dunbar SB, Butler J. The Importance of NLRP3 Inflammasome in Heart Failure. J Card Fail 2015;21:586–93. ButtsB GaryRA DunbarSB ButlerJ The Importance of NLRP3 Inflammasome in Heart Failure J Card Fail 2015 21 586 93 10.1016/j.cardfail.2015.04.014451602525982825 Search in Google Scholar

Horng T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol 2014;35:253–61. HorngT Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome Trends Immunol 2014 35 253 61 10.1016/j.it.2014.02.007404182324646829 Search in Google Scholar

Lee GS, Subramanian N, Kim AI et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012;492:123–7. LeeGS SubramanianN KimAI The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP Nature 2012 492 123 7 10.1038/nature11588417556523143333 Search in Google Scholar

Chen G, Chelu MG, Dobrev D, Li N. Cardiomyocyte Inflammasome Signaling in Cardiomyopathies and Atrial Fibrillation: Mechanisms and Potential Therapeutic Implications. Front Physiol 2018;9:1115. ChenG CheluMG DobrevD LiN Cardiomyocyte Inflammasome Signaling in Cardiomyopathies and Atrial Fibrillation: Mechanisms and Potential Therapeutic Implications Front Physiol 2018 9 1115 10.3389/fphys.2018.01115610065630150941 Search in Google Scholar

Zeng C, Duan F, Hu J et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol 2020;34:101523. ZengC DuanF HuJ NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy Redox Biol 2020 34 101523 10.1016/j.redox.2020.101523732797932273259 Search in Google Scholar

Satoh M, Tabuchi T, Itoh T, Nakamura M. NLRP3 inflammasome activation in coronary artery disease: results from prospective and randomized study of treatment with atorvastatin or rosuvastatin. Clin Sci (Lond) 2014;126:233–41. SatohM TabuchiT ItohT NakamuraM NLRP3 inflammasome activation in coronary artery disease: results from prospective and randomized study of treatment with atorvastatin or rosuvastatin Clin Sci (Lond) 2014 126 233 41 10.1042/CS2013004323944632 Search in Google Scholar

Yu SY, Tang L, Zhao GJ, Zhou SH. Statin protects the heart against ischemia-reperfusion injury via inhibition of the NLRP3 inflammasome. Int J Cardiol 2017;229:23–24. YuSY TangL ZhaoGJ ZhouSH Statin protects the heart against ischemia-reperfusion injury via inhibition of the NLRP3 inflammasome Int J Cardiol 2017 229 23 24 10.1016/j.ijcard.2016.11.21927865664 Search in Google Scholar

Lamkanfi M, Mueller JL, Vitari AC et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 2009;187:61–70. LamkanfiM MuellerJL VitariAC Glyburide inhibits the Cryopyrin/Nalp3 inflammasome J Cell Biol 2009 187 61 70 10.1083/jcb.200903124276209919805629 Search in Google Scholar

Jiang T, Jiang D, Zhang L, Ding M, Zhou H. Anagliptin ameliorates high glucose- induced endothelial dysfunction via suppression of NLRP3 inflammasome activation mediated by SIRT1. Mol Immunol 2019;107:54–60. JiangT JiangD ZhangL DingM ZhouH Anagliptin ameliorates high glucose- induced endothelial dysfunction via suppression of NLRP3 inflammasome activation mediated by SIRT1 Mol Immunol 2019 107 54 60 10.1016/j.molimm.2019.01.00630660990 Search in Google Scholar

Luo X, Hu Y, He S et al. Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation. Arch Biochem Biophys 2019;671:203–209. LuoX HuY HeS Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation Arch Biochem Biophys 2019 671 203 209 10.1016/j.abb.2019.07.00831302140 Search in Google Scholar

Chen X, Huang Q, Feng J, Xiao Z, Zhang X, Zhao L. GLP-1 alleviates NLRP3 inflammasome-dependent inflammation in perivascular adipose tissue by inhibiting the NF-κB signalling pathway. J Int Med Res 2021;49:300060521992981. ChenX HuangQ FengJ XiaoZ ZhangX ZhaoL GLP-1 alleviates NLRP3 inflammasome-dependent inflammation in perivascular adipose tissue by inhibiting the NF-κB signalling pathway J Int Med Res 2021 49 300060521992981 10.1177/0300060521992981791788733641439 Search in Google Scholar

Li XX, Ling SK, Hu MY, Ma Y, Li Y, Huang PL. Protective effects of acarbose against vascular endothelial dysfunction through inhibiting Nox4/NLRP3 inflammasome pathway in diabetic rats. Free Radic Biol Med 2019;145:175–186. LiXX LingSK HuMY MaY LiY HuangPL Protective effects of acarbose against vascular endothelial dysfunction through inhibiting Nox4/NLRP3 inflammasome pathway in diabetic rats Free Radic Biol Med 2019 145 175 186 10.1016/j.freeradbiomed.2019.09.01531541678 Search in Google Scholar

Deng Y, Han X, Yao Z et al. PPARα Agonist Stimulated Angiogenesis by Improving Endothelial Precursor Cell Function Via a NLRP3 Inflammasome Pathway. Cell Physiol Biochem 2017;42:2255–2266. DengY HanX YaoZ PPARα Agonist Stimulated Angiogenesis by Improving Endothelial Precursor Cell Function Via a NLRP3 Inflammasome Pathway Cell Physiol Biochem 2017 42 2255 2266 10.1159/00047999928817808 Search in Google Scholar

Kim SR, Lee SG, Kim SH et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 2020;11:2127. KimSR LeeSG KimSH SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease Nat Commun 2020 11 2127 10.1038/s41467-020-15983-6719538532358544 Search in Google Scholar

Nidorf SM, Fiolet ATL, Mosterd A et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med 2020;383:1838–1847. NidorfSM FioletATL MosterdA Colchicine in Patients with Chronic Coronary Disease N Engl J Med 2020 383 1838 1847 10.1056/NEJMoa202137232865380 Search in Google Scholar

Tardif JC, Kouz S, Waters DD et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med 2019;381:2497–2505. TardifJC KouzS WatersDD Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction N Engl J Med 2019 381 2497 2505 10.1056/NEJMoa191238831733140 Search in Google Scholar

Fujisue K, Sugamura K, Kurokawa H et al. Colchicine Improves Survival, Left Ventricular Remodeling, and Chronic Cardiac Function After Acute Myocardial Infarction. Circ J 2017;81:1174–1182. FujisueK SugamuraK KurokawaH Colchicine Improves Survival, Left Ventricular Remodeling, and Chronic Cardiac Function After Acute Myocardial Infarction Circ J 2017 81 1174 1182 10.1253/circj.CJ-16-094928420825 Search in Google Scholar

Ridker PM, Everett BM, Thuren T et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 2017;377:1119–1131. RidkerPM EverettBM ThurenT Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease N Engl J Med 2017 377 1119 1131 10.1056/NEJMoa170791428845751 Search in Google Scholar

Van Tassell BW, Lipinski MJ, Appleton D et al. Rationale and design of the Virginia Commonwealth University-Anakinra Remodeling Trial-3 (VCU-ART3): A randomized, placebo-controlled, double-blinded, multicenter study. Clin Cardiol 2018;41:1004–1008. Van TassellBW LipinskiMJ AppletonD Rationale and design of the Virginia Commonwealth University-Anakinra Remodeling Trial-3 (VCU-ART3): A randomized, placebo-controlled, double-blinded, multicenter study Clin Cardiol 2018 41 1004 1008 10.1002/clc.22988615304230033595 Search in Google Scholar

Zhang X, Xu A, Lv J et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur J Med Chem 2020;185:111822. ZhangX XuA LvJ Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases Eur J Med Chem 2020 185 111822 10.1016/j.ejmech.2019.11182231699536 Search in Google Scholar

Coll RC, Hill JR, Day CJ et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 2019;15:556–559. CollRC HillJR DayCJ MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition Nat Chem Biol 2019 15 556 559 10.1038/s41589-019-0277-731086327 Search in Google Scholar

Ward R, Li W, Abdul Y et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res 2019;142:237–250. WardR LiW AbdulY NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia Pharmacol Res 2019 142 237 250 10.1016/j.phrs.2019.01.035648679230818045 Search in Google Scholar

Pavillard LE, Cañadas-Lozano D, Alcocer-Gómez E et al. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget 2017;8:99740–99756. PavillardLE Cañadas-LozanoD Alcocer-GómezE NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction Oncotarget 2017 8 99740 99756 10.18632/oncotarget.20763572512829245937 Search in Google Scholar

Jiang H, He H, Chen Y et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 2017; 214:3219–3238. JiangH HeH ChenY Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders J Exp Med 2017 214 3219 3238 10.1084/jem.20171419567917229021150 Search in Google Scholar

Qiao J, Wu X, Luo Q et al. NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica 2018;103:1568–1576. QiaoJ WuX LuoQ NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis Haematologica 2018 103 1568 1576 10.3324/haematol.2018.191700611912829794149 Search in Google Scholar

Zhou Z, Wang Z, Guan Q et al. PEDF Inhibits the Activation of NLRP3 Inflammasome in Hypoxia Cardiomyocytes through PEDF Receptor/Phospholipase A2. Int J Mol Sci 2016;17. ZhouZ WangZ GuanQ PEDF Inhibits the Activation of NLRP3 Inflammasome in Hypoxia Cardiomyocytes through PEDF Receptor/Phospholipase A2 Int J Mol Sci 2016 17 10.3390/ijms17122064518786427973457 Search in Google Scholar

Lv D, Cheng X, Tang L, Jiang M. The cardioprotective effect of total flavonoids on myocardial ischemia/reperfusion in rats. Biomed Pharmacother 2017;88:277–284. LvD ChengX TangL JiangM The cardioprotective effect of total flavonoids on myocardial ischemia/reperfusion in rats Biomed Pharmacother 2017 88 277 284 10.1016/j.biopha.2017.01.06028110194 Search in Google Scholar

Pan XC, Liu Y, Cen YY et al. Dual Role of Triptolide in Interrupting the NLRP3 Inflammasome Pathway to Attenuate Cardiac Fibrosis. Int J Mol Sci 2019;20. PanXC LiuY CenYY Dual Role of Triptolide in Interrupting the NLRP3 Inflammasome Pathway to Attenuate Cardiac Fibrosis Int J Mol Sci 2019 20 10.3390/ijms20020360635932030654511 Search in Google Scholar

Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol 2019;10:2538. ZahidA LiB KombeAJK JinT TaoJ Pharmacological Inhibitors of the NLRP3 Inflammasome Front Immunol 2019 10 2538 10.3389/fimmu.2019.02538684294331749805 Search in Google Scholar

Chew CL, Conos SA, Unal B, Tergaonkar V. Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends Mol Med 2018;24:66–84. ChewCL ConosSA UnalB TergaonkarV Noncoding RNAs: Master Regulators of Inflammatory Signaling Trends Mol Med 2018 24 66 84 10.1016/j.molmed.2017.11.00329246760 Search in Google Scholar

Zhaolin Z, Jiaojiao C, Peng W et al. OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. J Cell Physiol 2019;234:7475–7491. ZhaolinZ JiaojiaoC PengW OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway J Cell Physiol 2019 234 7475 7491 10.1002/jcp.2750930370524 Search in Google Scholar

Huang WQ, Wei P, Lin RQ, Huang F. Protective Effects of Microrna-22 Against Endothelial Cell Injury by Targeting NLRP3 Through Suppression of the Inflammasome Signaling Pathway in a Rat Model of Coronary Heart Disease. Cell Physiol Biochem 2017;43:1346–1358. HuangWQ WeiP LinRQ HuangF Protective Effects of Microrna-22 Against Endothelial Cell Injury by Targeting NLRP3 Through Suppression of the Inflammasome Signaling Pathway in a Rat Model of Coronary Heart Disease Cell Physiol Biochem 2017 43 1346 1358 10.1159/00048184628992621 Search in Google Scholar

Jaguszewski M, Osipova J, Ghadri JR et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J 2014;35:999–1006. JaguszewskiM OsipovaJ GhadriJR A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction Eur Heart J 2014 35 999 1006 10.1093/eurheartj/eht392398506124046434 Search in Google Scholar

Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding RNAs - an update. Nat Rev Clin Oncol 2018;15:541–563. AnfossiS BabayanA PantelK CalinGA Clinical utility of circulating non-coding RNAs - an update Nat Rev Clin Oncol 2018 15 541 563 10.1038/s41571-018-0035-x29784926 Search in Google Scholar

eISSN:
2734-6382
Język:
Angielski