Otwarty dostęp

Spike Patterns and Chaos in a Map–Based Neuron Model

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Mathematical Modeling in Medical Problems (Special section, pp. 349-428), Urszula Foryś, Katarzyna Rejniak, Barbara Pękala, Agnieszka Bartłomiejczyk (Eds.)

Zacytuj

Afraimovich, V. and Hsu, S. (2002). Lectures on Chaotic Dynamical Systems, American Mathematical Society, Providence. Search in Google Scholar

Alsedà, L., Llibre, J., Misiurewicz, M. and Tresser, C. (1989). Periods and entropy for Lorenz-like maps, Annales de l’Institut Fourier (Grenoble) 39(4): 929–952, DOI: 10.5802/aif.1195. Search in Google Scholar

Cholewa, Ł. and Oprocha, P. (2021a). On α-limit sets in Lorenz maps, Entropy 23(9): 1153. DOI: 10.3390/e23091153. Search in Google Scholar

Cholewa, Ł. and Oprocha, P. (2021b). Renormalization in Lorenz maps—Completely invariant sets and periodic orbits. arXiv: 2104.00110[math.DS]. Search in Google Scholar

Courbage, M., Maslennikov, O.V. and Nekorkin, V.I. (2012). Synchronization in time-discrete model of two electrically coupled spike-bursting neurons, Chaos, Solitons, Fractals 45(05): 645–659, DOI: 10.1016/j.chaos.2011.12.018. Search in Google Scholar

Courbage, M. and Nekorkin, V.I. (2010). Map based models in neurodynamics, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 20(06): 1631–1651, DOI: 10.1142/S0218127410026733. Search in Google Scholar

Courbage, M., Nekorkin, V.I. and Vdovin, L.V. (2007). Chaotic oscillations in a map-based model of neural activity, Chaos 17(4): 043109, DOI: 10.1063/1.2795435. Search in Google Scholar

Derks, G., Glendinning, P.A. and Skeldon, A.C. (2021). Creation of discontinuities in circle maps, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477(2251): 20200872, DOI: 10.1098/rspa.2020.0872. Search in Google Scholar

Ding, Y.M., Fan, A.H. and Yu, J.H. (2010). Absolutely continuous invariant measures of piecewise linear Lorenz maps. arXiv: 1001.3014 [math.DS]. Search in Google Scholar

FitzHugh, R. (1955). Mathematical models of the threshold phenomena in the nerve membrane, The Bulletin of Mathematical Biophysics 17: 257–278, DOI: 10.1007/BF02477753. Search in Google Scholar

Geller, W. and Misiurewicz, M. (2018). Farey–Lorenz permutations for interval maps, International Journal of Bifurcation and Chaos 28(02): 1850021, DOI: 10.1142/S0218127418500219. Search in Google Scholar

Hess, A., Yu, L., Klein, I., Mazancourt, M.D., Jebrak, G. and Mal, H. (2013). Neural mechanisms underlying breathing complexity, PLoS ONE 8(10): e75740, DOI: 10.1371/journal.pone.0075740. Search in Google Scholar

Hofbauer, F. (1979). Maximal measures for piecewise monotonically increasing transformations on [0,1], in M. Denker and K. Jacobs (Eds), Ergodic Theory, Springer, Berlin/Heidelberg, pp. 66–77. Search in Google Scholar

Hofbauer, F. (1981). The maximal measure for linear mod. one transformations, Journal of the London Mathematical Society s2–23(1): 92–112, DOI: 10.1112/jlms/s2-23.1.92. Search in Google Scholar

Ibarz, B., Casado, J.M. and Sanjuán, M.A.F. (2011). Map-based models in neuronal dynamics, Physics Reports 501(1–2): 1–74, DOI: 10.1016/j.physrep.2010.12.003. Search in Google Scholar

Kameyama, A. (2002). Topological transitivity and strong transitivity, Acta Mathematica Universitatis Comenianae 71(2): 139–145. Search in Google Scholar

Korbicz, J., Patan, K. and Obuchowicz, A. (1999). Dynamic neural networks for process modelling in fault detection and isolation systems, International Journal of Applied Mathematics and Computer Science 9(3): 519–546. Search in Google Scholar

Llovera-Trujillo, F., Signerska-Rynkowska, J. and Bartłomiejczyk, P. (2023). Periodic and chaotic dynamics in a map-based neuron model, Mathematical Methods in the Applied Sciences 46(11): 11906–11931. Search in Google Scholar

Maslennikov, O.V. and Nekorkin, V.I. (2012). Discrete model of the olivo-cerebellar system: Structure and dynamics, Radiophysics and Quantum Electronics 55(3): 198–214, DOI: 10.1007/s11141-012-9360-6. Search in Google Scholar

Maslennikov, O.V. and Nekorkin, V.I. (2013). Dynamic boundary crisis in the Lorenz-type map, Chaos 23(2): 023129, DOI: 10.1063/1.4811545. Search in Google Scholar

Maslennikov, O.V., Nekorkin, V.I. and Kurths, J. (2018). Transient chaos in the Lorenz-type map with periodic forcing, Chaos 28(3): 033107, DOI:10.1063/1.5018265. Search in Google Scholar

Oprocha, P., Potorski, P. and Raith, P. (2019). Mixing properties in expanding Lorenz maps, Advances in Mathematics. 343: 712–755, DOI: 10.1016/j.aim.2018.11.015. Search in Google Scholar

Palmer, R. (1979). On the Classification of Measure Preserving Transformations of Lebesgue Spaces, PhD thesis, University of Warwick, Warwick, https://wrap.warwick.ac.uk/88796/1/WRAP_Theses_Palmer_2016.pdf. Search in Google Scholar

Parry, W. (1979). The Lorenz attractor and a related population model, in M. Denker and K. Jacobs (eds), Ergodic Theory, Springer, Berlin/Heidelberg, pp. 169–187, DOI: 10.1007/BFb0063293. Search in Google Scholar

Patan, K., Witczak, M. and Korbicz, J. (2008). Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematics and Computer Science 18(4): 443–454, DOI: 10.2478/v10006-008-0039-2. Search in Google Scholar

Rubin, J.E., Touboul, J.D., Signerska-Rynkowska, J. and Vidal, A. (2017). Wild oscillations in a nonlinear neuron model with resets. II: Mixed-mode oscillations, Discrete and Continuous Dynamical Systems B 22(10): 4003–4039, DOI: 10.3934/dcdsb.2017205. Search in Google Scholar

Yu, L., Mazancourt, M.D. and Hess, A. (2016). Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease, Human Brain Mapping 37(8): 2736–2754, DOI: 10.1002/hbm.23205. Search in Google Scholar

Yue, Y., Liu, Y.J., Song, Y.L., Chen, Y. and Yu, L. (2017). Information capacity and transmission in a Courbage–Nekorkin–Vdovin map-based neuron model, Chinese Physics Letters 34(4): 048701, DOI: 10.1088/0256-307x/34/4/048701. Search in Google Scholar

eISSN:
2083-8492
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Mathematics, Applied Mathematics