Otwarty dostęp

Binary Associative Memories with Complemented Operations

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Automation and Communication Systems for Autonomous Platforms (Special section, pp. 171-218), Zygmunt Kitowski, Paweł Piskur and Stanisław Hożyń (Eds.)

Zacytuj

Barkalov, A., Titarenko, L. and Mazurkiewicz, M. (2022). Improving the LUT count for Mealy FSMs with transformation of output collections, International Journal of Applied Mathematics and Computer Science 32(3): 479–494, DOI: 10.34768/amcs-2022-0035. Search in Google Scholar

Chung, F.-L. and Lee, T. (1994). Towards a high capacity fuzzy associative memory model, Proceedings of the 1994 IEEE International Conference on Neural Networks (ICNN’94), Florida, USA, Vol. 3, pp. 1595–1599, DOI: 10.1109/ICNN.1994.374394. Search in Google Scholar

Feng, N., Cao, X., Li, S., Ao, L. and Wang, S. (2009). A new method of morphological associative memories, Emerging Intelligent Computing Technology and Applications, with Aspects of Artificial Intelligence, ICIC 2009, Ulsan, South Korea, pp. 407–416, DOI: 10.1007/978-3-642-04020-7 43. Search in Google Scholar

Feng, N.-Q., Tian, Y., Wang, X.-F., Song, L.-M., Fan, H.-J. and Shuang-Xi, W. (2015). Logarithmic and exponential morphological associative memories, Journal of Software 26(7): 1662–1674, DOI: 10.13328/j.cnki.jos.004620. Search in Google Scholar

Feng, N. and Yao, Y. (2016). No rounding reverse fuzzy morphological associative memories, Neural Network World 26(6): 571–587, DOI: 10.14311/NNW.2016.26.033. Search in Google Scholar

Gamino-Carranza, A. (2022). Binary associative memories, https://github.com/arturogam/Binary-Associative-Memories, (programming code). Search in Google Scholar

Hassoun, M.H. (1993). Associative Neural Memories: Theory and Implementation, Oxford University Press, Inc., New York. Search in Google Scholar

Hattori, M., Fukui, A. and Ito, H. (2002). A fast method of constructing kernel patterns for morphological associative memory, 9th International Conference on Neural Information Processing, ICONI 02, Singapore, pp. 1058–1063, DOI: 10.1109/ICONIP.2002.1198222. Search in Google Scholar

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the United States of America 79(8): 2554–2558, DOI: 10.1073/pnas.79.8.2554. Search in Google Scholar

Ishi, S., Fukumizu, K. and Watanabe, S. (1996). A network of chaotic elements for information processing, Neural Networks 9(1): 25–40, DOI: 10.1016/0893-6080(95)00100-X. Search in Google Scholar

Kosko, B. (1991). Fuzzy associative memories, Proceedings of the 2nd Joint Technology Workshop on Neural Networks and Fuzzy Logic, Houston, USA, pp. 3–58. Search in Google Scholar

Lee, G. and Farhat, N.H. (2001). Parametrically coupled sine map networks, International Journal of Bifurcation and Chaos 11(07): 1815–1834, DOI: 10.1142/S0218127401003048. Search in Google Scholar

Liu, P. (1999). The fuzzy associative memory of max-min fuzzy neural network with threshold, Fuzzy Sets and Systems 107(2): 147–157, DOI: 10.1016/S0165-0114(97)00352-7. Search in Google Scholar

McEliece, R., Posner, E., Rodemich, E. and Venkatesh, S. (1987). The capacity of the Hopfield associative memory, IEEE Transactions on Information Theory 33(4): 461–482, DOI: 10.1109/TIT.1987.1057328. Search in Google Scholar

Mustafa, A.A. (2018). Probabilistic binary similarity distance for quick binary image matching, IET Image Processing 12(10): 1844–1856, DOI: 10.1049/iet-ipr.2017.1333. Search in Google Scholar

Rani, S.S., Rao, N. and Vatsal, S. (2018). Review on neural networks associative memory models, International Journal of Pure and Applied Mathematics 120(6): 3143–3154. Search in Google Scholar

Ritter, G.X., Sussner, P. and Díaz de León, J.L. (1998). Morphological associative memories, IEEE Transactions on Neural Networks 2(9): 281–293, DOI: 10.1109/72.661123. Search in Google Scholar

Ritter, G.X. and Urcid, G. (2021). Introduction to Lattice Algebra. With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks, Chapman and Hall/CRC, Boca Raton. Search in Google Scholar

Salgado-Ramírez, J.C., Vianney Kinani, J.M., Cendejas-Castro, E.A., Rosales-Silva, A.J., Ramos-Díaz, E. and Díaz-de Léon-Santiago, J.L. (2022). New model of heteroasociative min memory robust to acquisition noise, Mathematics 10(148): 2–35, DOI: 10.3390/math10010148. Search in Google Scholar

Sussner, P. (2000). Observations on morphological associative memories and the kernel method, Neurocomputing 31(1–4): 167–183, DOI: 10.1016/S0925-2312(99)00176-9. Search in Google Scholar

Sussner, P. and Valle, M.E. (2006). Implicative fuzzy associative memories, IEEE Transactions on Fuzzy Systems 14(6): 793–807, DOI: 10.1109/TFUZZ.2006.879968. Search in Google Scholar

Tikhonenko, O., Ziółkowski, M. and Kempa, W.M. (2021). Queueing systems with random volume customers and a sectorized unlimited memory buffer, International Journal of Applied Mathematics and Computer Science 31(3): 471–486, DOI: 10.34768/amcs-2021-0032. Search in Google Scholar

Urcid, G. and Ritter, G.X. (2007). Noise masking for pattern recall using a single lattice matrix associative memory, in V.G. Kaburlasos and G.X. Ritter (Eds), Computational Intelligence Based on Lattice Theory, Springer, Berlin/Heidelberg, pp. 81–100, DOI: 10.1007/978-3-540-72687-6 5. Search in Google Scholar

Wang, S. and Lu, H. (2004). On new fuzzy morphological associative memories, IEEE Transactions on Fuzzy Systems 12(3): 316–323, DOI: 10.1109/TFUZZ.2004.825977. Search in Google Scholar

Wang, T. and Jia, N. (2017). A GCM neural network using cubic logistic map for information processing, Neural Computing and Applications 28(7): 1891–1903, DOI: 10.1007/s00521-016-2407-4. Search in Google Scholar

Wang, T., Jia, N. and Wang, K. (2012). A novel GCM chaotic neural network for information processing, Communications in Nonlinear Science and Numerical Simulation 17(12): 4846–4855, DOI: 10.1016/j.cnsns.2012.05.011. Search in Google Scholar

Xia, G., Tang, Z. and Li, Y. (2004). Hopfield neural network with hysteresis for maximum cut problem, Neural Information Processing—Letters and Reviews 4(2): 19–26. Search in Google Scholar

Xiao, P., Yang, F. and Yu, Y. (1997). Max-min encoding learning algorithm for fuzzy max-multiplication associative memory networks, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, USA, pp. 3674–3679, DOI: 10.1109/ICSMC.1997.633240. Search in Google Scholar

Zhang, S., Lin, S. and Chen, C. (1993). Improved model of optical fuzzy associative memory, Optics Letters 18(21): 1837–1839, DOI: 10.1364/OL.18.001837. Search in Google Scholar

Zheng, L. and Tang, X. (2005). A new parameter control method for S-GCM, Pattern Recognition Letters 26(7): 939–942, DOI: 10.1016/j.patrec.2004.09.041. Search in Google Scholar

eISSN:
2083-8492
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Mathematics, Applied Mathematics