This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol. 2020 Nov;129(5):1133–1156. https://doi.org/10.1111/jam.14754AlemnehAAZhouYRyderMHDentonMD.Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizo-bial symbioses. J Appl Microbiol. 2020Nov;129(5):1133–1156. https://doi.org/10.1111/jam.14754Search in Google Scholar
Alibrandi P, Schnell S, Perotto S, Cardinale M. Diversity and structure of the endophytic bacterial communities associated with three terrestrial orchid species as revealed by 16S rRNA gene metabarcoding. Front Microbiol. 2020 Dec;11:604964. https://doi.org/10.3389/fmicb.2020.604964AlibrandiPSchnellSPerottoSCardinaleM.Diversity and structure of the endophytic bacterial communities associated with three terrestrial orchid species as revealed by 16S rRNA gene metabarcoding. Front Microbiol. 2020Dec;11:604964. https://doi.org/10.3389/fmicb.2020.604964Search in Google Scholar
Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 2017 Jun;8:971. https://doi.org/10.3389/fmicb.2017.00971AloriETGlickBRBabalolaOO.Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 2017Jun;8:971. https://doi.org/10.3389/fmicb.2017.00971Search in Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct;215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2AltschulSFGishWMillerWMyersEWLipmanDJ.Basic local alignment search tool. J Mol Biol. 1990Oct;215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2Search in Google Scholar
Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria (PGPB): Isolation and screening of PGP activities. Curr Protoc Plant Biol. 2017 Sep;2(3):190–209. https://doi.org/10.1002/pb.20054AmbrosiniAPassagliaLMP.Plant growth-promoting bacteria (PGPB): Isolation and screening of PGP activities. Curr Protoc Plant Biol. 2017Sep;2(3):190–209. https://doi.org/10.1002/pb.20054Search in Google Scholar
Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). In: Hardarson G, Broughton WJ., editors. Molecular Microbial Ecology of the Soil. Developments in Plant and Soil Sciences, vol 83. Dordrecht (The Netherlands): Springer; 1998. p. 57–67. https://doi.org/10.1007/978-94-017-2321-3_5AntounHBeauchampCJGoussardNChabotRLalandeR.Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). In: HardarsonGBroughtonWJ., editors. Molecular Microbial Ecology of the Soil. Developments in Plant and Soil Sciences, vol 83. Dordrecht (The Netherlands): Springer; 1998. p. 57–67. https://doi.org/10.1007/978-94-017-2321-3_5Search in Google Scholar
Araya MA, Valenzuela T, Inostroza NG, Maruyama F, Jorquera MA, Acuña JJ. Isolation and characterization of cold-tolerant hyper-ACC-degrading bacteria from the rhizosphere, endosphere, and phyllosphere of Antarctic vascular plants. Microorganisms. 2020 Nov;8(11):1788. https://doi.org/10.3390/microorganisms8111788ArayaMAValenzuelaTInostrozaNGMaruyamaFJorqueraMAAcuñaJJ.Isolation and characterization of cold-tolerant hyper-ACC-degrading bacteria from the rhizosphere, endosphere, and phyllosphere of Antarctic vascular plants. Microorganisms. 2020Nov;8(11):1788. https://doi.org/10.3390/microorganisms8111788Search in Google Scholar
ATSDR. Draft toxicological profile for manganese. U.S. Department of Health and Human Services, Public Health Service. Atlanta (USA): Agency for Toxic Substances and Disease Registry; 2008.ATSDR. Draft toxicological profile for manganese. U.S. Department of Health and Human Services, Public Health Service. Atlanta (USA): Agency for Toxic Substances and Disease Registry; 2008.Search in Google Scholar
Barriuso J, Pereyra MT, Lucas García JA, Megías M, Gutierrez Mañero FJ, Ramos B. Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp. Microb Ecol. 2005 Jul;50(1):82–9. https://doi.org/10.1007/s00248-004-0112-9BarriusoJPereyraMTLucas GarcíaJAMegíasMGutierrez MañeroFJRamosB.Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp. Microb Ecol. 2005Jul;50(1):82–9. https://doi.org/10.1007/s00248-004-0112-9Search in Google Scholar
Benesperi R, Giuliani C, Zanetti S, Gennai M, Mariotti Lippi M, Guidi T, Nascimbene J, Foggi B. Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers Conserv. 2012;21:3555–3568. https://doi.org/10.1007/s10531-012-0380-5BenesperiRGiulianiCZanettiSGennaiMMariotti LippiMGuidiTNascimbeneJFoggiB.Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers Conserv. 2012;21:3555–3568. https://doi.org/10.1007/s10531-012-0380-5Search in Google Scholar
Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012 Aug;17(8):478–86. https://doi.org/10.1016/j.tplants.2012.04.001BerendsenRLPieterseCMBakkerPA.The rhizosphere microbiome and plant health. Trends Plant Sci. 2012Aug;17(8):478–86. https://doi.org/10.1016/j.tplants.2012.04.001Search in Google Scholar
Braud A, Jézéquel K, Bazot S, Lebeau T. Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere. 2009 Jan; 74(2):280–286. https://doi.org/10.1016/j.chemosphere.2008.09.013BraudAJézéquelKBazotSLebeauT.Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere. 2009Jan; 74(2):280–286. https://doi.org/10.1016/j.chemosphere.2008.09.013Search in Google Scholar
Brígido C, Menéndez E, Paço A, Glick BR, Belo A, Félix MR, Oliveira S, Carvalho M. Mediterranean native leguminous plants: A reservoir of endophytic bacteria with potential to enhance chickpea growth under stress conditions. Microorganisms. 2019 Sep; 7(10):392. https://doi.org/10.3390/microorganisms7100392BrígidoCMenéndezEPaçoAGlickBRBeloAFélixMROliveiraSCarvalhoM.Mediterranean native leguminous plants: A reservoir of endophytic bacteria with potential to enhance chickpea growth under stress conditions. Microorganisms. 2019Sep; 7(10):392. https://doi.org/10.3390/microorganisms7100392Search in Google Scholar
Brooks RR. Serpentine and its vegetation: A multidisciplinary approach. Portland (USA): Dioscorides Press; 1987.BrooksRR.Serpentine and its vegetation: A multidisciplinary approach. Portland (USA): Dioscorides Press; 1987.Search in Google Scholar
Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106BulgarelliDSchlaeppiKSpaepenSVer Loren van ThemaatESchulze-LefertP.Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106Search in Google Scholar
Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol. 2008;45(2):448–458. https://doi.org/10.1111/j.1365-2664.2007.01398.xChytrýMMaskellLCPinoJPyšekPVilàMFontXSmartSM.Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol. 2008;45(2):448–458. https://doi.org/10.1111/j.1365-2664.2007.01398.xSearch in Google Scholar
Denneman CAJ, Robberse JG. Ecotoxicological risk assessment as a base for development of soil quality criteria. In: Arendt F, Hinsenveld M, Van Den Brink WJ, editors. Contaminated soil ‘90. Dordrecht (The Netherlands): Springer; 1990. p. 157–164. https://doi.org/10.1007/978-94-011-3270-1_28DennemanCAJRobberseJG.Ecotoxicological risk assessment as a base for development of soil quality criteria. In: ArendtFHinsenveldMVan Den BrinkWJ, editors. Contaminated soil ‘90. Dordrecht (The Netherlands): Springer; 1990. p. 157–164. https://doi.org/10.1007/978-94-011-3270-1_28Search in Google Scholar
Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek. 2014 Jul; 106(1):85–125. https://doi.org/10.1007/s10482-013-0095-yDucaDLorvJPattenCLRoseDGlickBR.Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek. 2014Jul; 106(1):85–125. https://doi.org/10.1007/s10482-013-0095-ySearch in Google Scholar
Eddy NO, Odoemelam SA, Mbaba A. Elemental composition of soil in some dumpsites. Electron J Environ Agric Food Chem. 2006; 5(2):1036–1042.EddyNOOdoemelamSAMbabaA.Elemental composition of soil in some dumpsites. Electron J Environ Agric Food Chem. 2006; 5(2):1036–1042.Search in Google Scholar
Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y, Wei G. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res. 2018 Dec; 217:51–59. https://doi.org/10.1016/j.micres.2018.09.002FanMLiuZNanLWangEChenWLinYWeiG.Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res. 2018Dec; 217:51–59. https://doi.org/10.1016/j.micres.2018.09.002Search in Google Scholar
Gamalero E, Glick BR. Mechanisms used by plant growth promoting bacteria. In: Maheshwari D, editor. Bacteria in agrobiology: Plant nutrient management. Berlin, Heidelberg (Germany): Springer; 2011. p. 17–46. https://doi.org/10.1007/978-3-642-21061-7_2GamaleroEGlickBR.Mechanisms used by plant growth promoting bacteria. In: MaheshwariD, editor. Bacteria in agrobiology: Plant nutrient management. Berlin, Heidelberg (Germany): Springer; 2011. p. 17–46. https://doi.org/10.1007/978-3-642-21061-7_2Search in Google Scholar
Gamalero E, Lingua G, Glick BR. Ethylene, ACC, and the plant growth-promoting enzyme ACC deaminase. Biology. 2023 Jul; 12(8):1043. https://doi.org/10.3390/biology12081043GamaleroELinguaGGlickBR.Ethylene, ACC, and the plant growth-promoting enzyme ACC deaminase. Biology. 2023Jul; 12(8):1043. https://doi.org/10.3390/biology12081043Search in Google Scholar
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014 Jan;169(1):30–39. https://doi.org/10.1016/j.micres.2013.09.009GlickBR.Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014Jan;169(1):30–39. https://doi.org/10.1016/j.micres.2013.09.009Search in Google Scholar
Goswami D, Thakker JN, Dhandhukia PC. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J Microbiol Methods. 2015 Mar;110:7–14. https://doi.org/10.1016/j.mimet.2015.01.001GoswamiDThakkerJNDhandhukiaPC.Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J Microbiol Methods. 2015Mar;110:7–14. https://doi.org/10.1016/j.mimet.2015.01.001Search in Google Scholar
Goswami M, Deka S. Plant growth-promoting rhizobacteria – alleviators of abiotic stresses in soil: A review. Pedosphere. 2020 Feb; 30(1):40–61. https://doi.org/10.1016/S1002-0160(19)60839-8GoswamiMDekaS.Plant growth-promoting rhizobacteria – alleviators of abiotic stresses in soil: A review. Pedosphere. 2020Feb; 30(1):40–61. https://doi.org/10.1016/S1002-0160(19)60839-8Search in Google Scholar
Haahtela K, Kari K, Sundman V. Nitrogenase activity (acetylene reduction) of root-associated, cold-climate Azospirillum, Enterobacter, Klebsiella, and Pseudomonas species during growth on various carbon sources and at various partial pressures of oxygen. Appl Environ Microbiol. 1983 Feb;45(2):563–570. https://doi.org/10.1128/aem.45.2.563-570.1983HaahtelaKKariKSundmanV.Nitrogenase activity (acetylene reduction) of root-associated, cold-climate Azospirillum, Enterobac-ter, Klebsiella, and Pseudomonas species during growth on various carbon sources and at various partial pressures of oxygen. Appl Environ Microbiol. 1983Feb;45(2):563–570. https://doi.org/10.1128/aem.45.2.563-570.1983Search in Google Scholar
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis [Internet]. Palaeontologia Electronica. 2001;4(1):9pp. [cited 2024 Jun 14]. Available from http://palaeo-electronica.org/2001_1/past/issue1_01.htmHammerØHarperDATRyanPD.PAST: Paleontological statistics software package for education and data analysis [Internet]. Palae-ontologia Electronica. 2001;4(1):9pp. [cited 2024 Jun 14]. Available from http://palaeo-electronica.org/2001_1/past/issue1_01.htmSearch in Google Scholar
Herrera-Quiterio A, Toledo-Hernández E, Aguirre-Noyola JL, Romero Y, Ramos J, Palemón-Alberto F, Toribio-Jiménez J. Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Rev Argent Microbiol. 2020 Jul-Sep;52(3):231–239. https://doi.org/10.1016/j.ram.2019.08.003Herrera-QuiterioAToledo-HernándezEAguirre-NoyolaJLRomeroYRamosJPalemón-AlbertoFToribio-JiménezJ.Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Rev Argent Microbiol. 2020Jul-Sep;52(3):231–239. https://doi.org/10.1016/j.ram.2019.08.003Search in Google Scholar
Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, van der Heijden MGA, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018 Jul; 9(1):2738. https://doi.org/10.1038/s41467-018-05122-7HuLRobertCAMCadotSZhangXYeMLiBManzoDChervetNSteingerTVan der HeijdenMGAet al.Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018Jul; 9(1):2738. https://doi.org/10.1038/s41467-018-05122-7Search in Google Scholar
Hu S, Jiao J, Kou M, Wang N, García-Fayos P, Liu S. Quantifying the effects of Robinia pseudoacacia afforestation on plant community structure from a functional perspective: New prospects for management practices on the hilly and gullied Loess Plateau, China. Sci Total Environ. 2021 Jun;773:144878. https://doi.org/10.1016/j.scitotenv.2020.144878HuSJiaoJKouMWangNGarcía-FayosPLiuS.Quantifying the effects of Robinia pseudoacacia afforestation on plant community structure from a functional perspective: New prospects for management practices on the hilly and gullied Loess Plateau, China. Sci Total Environ. 2021Jun;773:144878. https://doi.org/10.1016/j.scitotenv.2020.144878Search in Google Scholar
Huu HH, Rudy S, Van Damme A. Distribution and contamination status of heavy metals in estuarine sediments near CauOng Harbor, Ha Long Bay, Vietnam. Geol Belg. 2010;13(1–2):37–47.HuuHHRudySVan DammeA.Distribution and contamination status of heavy metals in estuarine sediments near CauOng Harbor, Ha Long Bay, Vietnam. Geol Belg. 2010;13(1–2):37–47.Search in Google Scholar
Iqbal Z, Iqbal MS, Hashem A, Abd Allah EF, Ansari MI. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front Plant Sci. 2021 Mar;12:631810. https://doi.org/10.3389/fpls.2021.631810IqbalZIqbalMSHashemAAbd AllahEFAnsariMI.Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front Plant Sci. 2021Mar;12:631810. https://doi.org/10.3389/fpls.2021.631810Search in Google Scholar
ISO 11047:1998. Soil quality – Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc – Flame and electrothermal atomic absorption spectrometric methods. Geneva (Switzerland): International Organization for Standardization; 1998.ISO 11047:1998. Soil quality – Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc – Flame and electrothermal atomic absorption spectrometric methods. Geneva (Switzerland): International Organization for Standardization; 1998.Search in Google Scholar
ISO 11466:1995. Soil quality – Extraction of trace elements soluble in aqua regia. Geneva (Switzerland): International Organization for Standardization; 1995.ISO 11466:1995. Soil quality – Extraction of trace elements soluble in aqua regia. Geneva (Switzerland): International Organization for Standardization; 1995.Search in Google Scholar
Kierczak J, Pietranik A, Pędziwiatr A. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Sci Total Environ. 2021 Feb;755(1):142620. https://doi.org/10.1016/j.scitotenv.2020.142620KierczakJPietranikAPędziwiatrA.Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Sci Total Environ. 2021Feb;755(1):142620. https://doi.org/10.1016/j.scitotenv.2020.142620Search in Google Scholar
King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug; 44(2):301–307.KingEOWardMKRaneyDE.Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954Aug; 44(2):301–307.Search in Google Scholar
Kolbek J, Vítková M, Větvička V. [From history of Central European Robinia growths and its communities] (in Czech). Zpr Čes Bot Společ. 2004;39(2):287–298.KolbekJVítkováMVětvičkaV.[From history of Central European Robinia growths and its communities] (in Czech). Zpr Čes Bot Společ. 2004;39(2):287–298.Search in Google Scholar
Kruckeberg AR. III. Plant species in relation to serpentine soils. In: Whittaker R,H. The Ecology of Serpentine Soils. Ecology. 1954; 35(2):267–274. https://doi.org/10.2307/1931126KruckebergAR.III. Plant species in relation to serpentine soils. In: Whittaker R,H. The Ecology of Serpentine Soils. Ecology. 1954; 35(2):267–274. https://doi.org/10.2307/1931126Search in Google Scholar
Kumar A, Ramanathan AL, Prabha S, Ranjan RK, Ranjan S, Singh G. Metal speciation studies in the aquifer sediments of Semria Ojhapatti, Bhojpur District, Bihar. Environ Monit Assess. 2012 May;184(5):3027–3042. https://doi.org/10.1007/s10661-011-2168-6KumarARamanathanALPrabhaSRanjanRKRanjanSSinghG.Metal speciation studies in the aquifer sediments of Sem-ria Ojhapatti, Bhojpur District, Bihar. Environ Monit Assess. 2012May;184(5):3027–3042. https://doi.org/10.1007/s10661-011-2168-6Search in Google Scholar
Kumar A, Verma JP. Does plant-microbe interaction confer stress tolerance in plants: A review? Microbiol Res. 2018 Mar;207:41–52. https://doi.org/10.1016/j.micres.2017.11.004KumarAVermaJP.Does plant-microbe interaction confer stress tolerance in plants: A review?Microbiol Res. 2018Mar;207:41–52. https://doi.org/10.1016/j.micres.2017.11.004Search in Google Scholar
Kumar VS, Menon S, Agarwal H, Gopalakrishnan D. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour Effic Technol. 2017 Dec; 3(4):434–439. https://doi.org/10.1016/j.reffit.2017.04.004KumarVSMenonSAgarwalHGopalakrishnanD.Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour Effic Technol. 2017Dec; 3(4):434–439. https://doi.org/10.1016/j.reffit.2017.04.004Search in Google Scholar
Latt ZK, Yu SS, Kyaw EP, Lynn TM, Nwe MT, Mon WW. Isolation, evaluation and characterization of free living nitrogen fixing bacteria from agricultural soils in Myanmar for biofertilizer formulation. Int J Plant Biol. 2018;6(3):1092.LattZKYuSSKyawEPLynnTMNweMTMonWW.Isolation, evaluation and characterization of free living nitrogen fixing bacteria from agricultural soils in Myanmar for biofertilizer formulation. Int J Plant Biol. 2018;6(3):1092.Search in Google Scholar
Lee W, van Baalen M, Jansen VA. An evolutionary mechanism for diversity in siderophore-producing bacteria. Ecol Lett. 2012 Feb; 15(2):119–125. https://doi.org/10.1111/j.1461-0248.2011.01717.xLeeWvan BaalenMJansenVA.An evolutionary mechanism for diversity in siderophore-producing bacteria. Ecol Lett. 2012Feb; 15(2):119–125. https://doi.org/10.1111/j.1461-0248.2011.01717.xSearch in Google Scholar
Lizarraga Mendiola L, Duran Dominguez MC, Gonzalez Sandoval MR. Environmental assessment of an active tailings pile in the State of Mexico (Central Mexico). Res J Environ Sci. 2008; 2(3):197–208. https://doi.org/10.3923/rjes.2008.197.208Lizarraga MendiolaLDuran DominguezMCGonzalez SandovalMR.Environmental assessment of an active tailings pile in the State of Mexico (Central Mexico). Res J Environ Sci. 2008; 2(3):197–208. https://doi.org/10.3923/rjes.2008.197.208Search in Google Scholar
Loew O, May DW. The relation of lime and magnesia to plant growth. I. Liming of soils from a physiological standpoint. II. Experimental study of the relation of lime and magnesia to plant growth. Washington (Usa): Government Printing Office; 1901.LoewOMayDW.The relation of lime and magnesia to plant growth. I. Liming of soils from a physiological standpoint. II. Experimental study of the relation of lime and magnesia to plant growth. Washington (Usa): Government Printing Office; 1901.Search in Google Scholar
Loska K, Wiechuła D, Korus I. Metal contamination of farming soils affected by industry. Environ Int. 2004 Apr;30(2):159–165. https://doi.org/10.1016/S0160-4120(03)00157-0LoskaKWiechułaDKorusI.Metal contamination of farming soils affected by industry. Environ Int. 2004Apr;30(2):159–165. https://doi.org/10.1016/S0160-4120(03)00157-0Search in Google Scholar
Ma Y, Rajkumar M, Freitas H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater. 2009 Jul;166(2–3):1154–1161. https://doi.org/10.1016/j.jhazmat.2008.12.018MaYRajkumarMFreitasH.Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater. 2009Jul;166(2–3):1154–1161. https://doi.org/10.1016/j.jhazmat.2008.12.018Search in Google Scholar
Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 2009 Oct;17(10):458–466. https://doi.org/10.1016/j.tim.2009.07.004Masson-BoivinCGiraudEPerretXBatutJ.Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?Trends Microbiol. 2009Oct;17(10):458–466. https://doi.org/10.1016/j.tim.2009.07.004Search in Google Scholar
Misra S, Chauhan PS. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech. 2020 Mar; 10(3):119. https://doi.org/10.1007/s13205-020-2104-yMisraSChauhanPS.ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech. 2020Mar; 10(3):119. https://doi.org/10.1007/s13205-020-2104-ySearch in Google Scholar
Morillo J, Usero J, Gracia I. Partitioning of metals in sediments from the Odiel River (Spain). Environ Int. 2002 Sep;28(4):263–271. https://doi.org/10.1016/s0160-4120(02)00033-8MorilloJUseroJGraciaI.Partitioning of metals in sediments from the Odiel River (Spain). Environ Int. 2002Sep;28(4):263–271. https://doi.org/10.1016/s0160-4120(02)00033-8Search in Google Scholar
Mucha AP, Almeida CMR, Bordalo AA, Vasconcelos MTSD. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuarine Coastal Shelf Sci. 2005 Aug;65(1–2):191–198. https://doi.org/10.1016/j.ecss.2005.06.007MuchaAPAlmeidaCMRBordaloAAVasconcelosMTSD.Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuarine Coastal Shelf Sci. 2005Aug;65(1–2):191–198. https://doi.org/10.1016/j.ecss.2005.06.007Search in Google Scholar
Müller G. [Schwermetallen in den Sedimenten des Rheins] (in German). Umsch Wiss Tech. 1979;79:778–783.MüllerG.[Schwermetallen in den Sedimenten des Rheins] (in German). Umsch Wiss Tech. 1979;79:778–783.Search in Google Scholar
Nye JV, Guerin WF, Boyd SA. Heterotrophic activity of microorganisms in soils treated with quaternary ammonium compounds. Environ Sci Technol. 1994 May;28(5):944–951. https://doi.org/10.1021/es00054a029NyeJVGuerinWFBoydSA.Heterotrophic activity of microorganisms in soils treated with quaternary ammonium compounds. Environ Sci Technol. 1994May;28(5):944–951. https://doi.org/10.1021/es00054a029Search in Google Scholar
Okedeyi OO, Dube S, Awofolu OR, Nindi MM. Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa. Environ Sci Pollut Res Int. 2014 Mar;21(6):4686–4696. https://doi.org/10.1007/s11356-013-2432-0OkedeyiOODubeSAwofoluORNindiMM.Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa. Environ Sci Pollut Res Int. 2014Mar;21(6):4686–4696. https://doi.org/10.1007/s11356-013-2432-0Search in Google Scholar
Peloquin RL, Hiebert RD. The effects of black locust (Robinia pseudoacacia L.) on species diversity and composition of black oak savanna/woodland communities. Nat Areas J. 1999;19:121–131.PeloquinRLHiebertRD.The effects of black locust (Robinia pseudoacacia L.) on species diversity and composition of black oak savanna/woodland communities. Nat Areas J. 1999;19:121–131.Search in Google Scholar
Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007 Jul;70(1):127–131. https://doi.org/10.1016/j.mimet.2007.03.023Pérez-MirandaSCabirolNGeorge-TéllezRZamudio-RiveraLSFernándezFJ.O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007Jul;70(1):127–131. https://doi.org/10.1016/j.mimet.2007.03.023Search in Google Scholar
Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition processes. A review. Biol Fertil Soils. 2015;51:403–415. https://doi.org/10.1007/s00374-015-0996-1PiiYMimmoTTomasiNTerzanoRCescoSCrecchioC.Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition processes. A review. Biol Fertil Soils. 2015;51:403–415. https://doi.org/10.1007/s00374-015-0996-1Search in Google Scholar
Rajkumar M, Ae N, Prasad MN, Freitas H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010 Mar;28(3):142–149. https://doi.org/10.1016/j.tibtech.2009.12.002RajkumarMAeNPrasadMNFreitasH.Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010Mar;28(3):142–149. https://doi.org/10.1016/j.tibtech.2009.12.002Search in Google Scholar
Rajkumar M, Vara Prasad MN, Freitas H, Ae N. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol. 2009;29(2):120–130. https://doi.org/10.1080/07388550902913772RajkumarMVara PrasadMNFreitasHAeN.Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol. 2009;29(2):120–130. https://doi.org/10.1080/07388550902913772Search in Google Scholar
Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P. Microbial siderophores and their potential applications: A review. Environ Sci Pollut Res Int. 2016 Mar;23(5):3984–3999. https://doi.org/10.1007/s11356-015-4294-0SahaMSarkarSSarkarBSharmaBKBhattacharjeeSTribediP.Microbial siderophores and their potential applications: A review. Environ Sci Pollut Res Int. 2016Mar;23(5):3984–3999. https://doi.org/10.1007/s11356-015-4294-0Search in Google Scholar
Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, Funk K, Ketter A, Kim S, Kimchi A, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020 Jan 8;48(D1):D9–D16. https://doi.org/10.1093/nar/gkz899SayersEWBeckJBristerJRBoltonEECaneseKComeauDCFunkKKetterAKimSKimchiAet al.Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020Jan8;48(D1):D9–D16. https://doi.org/10.1093/nar/gkz899Search in Google Scholar
Sazykin I, Khemelevtsova L, Azhogina T, Sazykina M. Heavy metals influence on the bacterial community of soils: A review. Agriculture. 2023;13(3):653. https://doi.org/10.3390/agriculture13030653SazykinIKhemelevtsovaLAzhoginaTSazykinaM.Heavy metals influence on the bacterial community of soils: A review. Agriculture. 2023;13(3):653. https://doi.org/10.3390/agriculture13030653Search in Google Scholar
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan;160(1): 47–56. https://doi.org/10.1016/0003-2697(87)90612-9SchwynBNeilandsJB.Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987Jan;160(1): 47–56. https://doi.org/10.1016/0003-2697(87)90612-9Search in Google Scholar
Senthilkumar M, Amaresan N, Sankaranarayanan A. Quantitative estimation of siderophore production by microorganisms. In: Plant-microbe interactions. Springer Protocols Handbooks. New York (USA): Humana; 2021, p. 183–186. https://doi.org/10.1007/978-1-0716-1080-0_48SenthilkumarMAmaresanNSankaranarayananA.Quantitative estimation of siderophore production by microorganisms. In: Plant-microbe interactions. Springer Protocols Handbooks. New York (USA): Humana; 2021, p. 183–186. https://doi.org/10.1007/978-1-0716-1080-0_48Search in Google Scholar
Shaharoona B, Arshad M, Zahir ZA, Khalid A. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem. 2006 Sep;38(9):2971–2975. https://doi.org/10.1016/j.soilbio.2006.03.024ShaharoonaBArshadMZahirZAKhalidA.Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem. 2006Sep;38(9):2971–2975. https://doi.org/10.1016/j.soilbio.2006.03.024Search in Google Scholar
Sinex SA, Wright DA. Distribution of trace metals in the sediments and biota of Chesapeake Bay. Mar Pollut Bull. 1988 Jun;19(9): 425–431. https://doi.org/10.1016/0025-326X(88)90397-9SinexSAWrightDA.Distribution of trace metals in the sediments and biota of Chesapeake Bay. Mar Pollut Bull. 1988Jun;19(9): 425–431. https://doi.org/10.1016/0025-326X(88)90397-9Search in Google Scholar
Sitzia T, Campagnaro T, Dainese M, Cierjacks A. Plant species diversity in alien black locust stands: a paired comparison with native stands across a north-Mediterranean range expansion. For Ecol Manage. 2012 Dec;285:85–91. https://doi.org/10.1016/j.foreco.2012.08.016SitziaTCampagnaroTDaineseMCierjacksA.Plant species diversity in alien black locust stands: a paired comparison with native stands across a north-Mediterranean range expansion. For Ecol Manage. 2012Dec;285:85–91. https://doi.org/10.1016/j.foreco.2012.08.016Search in Google Scholar
Sun C, Wu P, Wang G, Kong X. Heavy metal pollution decreases the stability of microbial co-occurrence networks in the rhizosphere of native plants. Front Environ Sci. 2022;10:979922. https://doi.org/10.3389/fenvs.2022.979922SunCWuPWangGKongX.Heavy metal pollution decreases the stability of microbial co-occurrence networks in the rhizosphere of native plants. Front Environ Sci. 2022;10:979922. https://doi.org/10.3389/fenvs.2022.979922Search in Google Scholar
Sutherland RA, Tolosa CA, Tack FM, Verloo MG. Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Arch Environ Contam Toxicol. 2000 May;38(4):428–438. https://doi.org/10.1007/s002449910057SutherlandRATolosaCATackFMVerlooMG.Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Arch Environ Contam Toxicol. 2000May;38(4):428–438. https://doi.org/10.1007/s002449910057Search in Google Scholar
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: From community assembly to plant health. Nat Rev Microbiol. 2020 Nov;18(11):607–621. https://doi.org/10.1038/s41579-020-0412-1TrivediPLeachJETringeSGSaTSinghBK.Plant-microbiome interactions: From community assembly to plant health. Nat Rev Microbiol. 2020Nov;18(11):607–621. https://doi.org/10.1038/s41579-020-0412-1Search in Google Scholar
Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For Ecol Manage. 2017 Jan;384:287–302. https://doi.org/10.1016/j.foreco.2016.10.057VítkováMMüllerováJSádloJPerglJPyšekP.Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For Ecol Manage. 2017Jan;384:287–302. https://doi.org/10.1016/j.foreco.2016.10.057Search in Google Scholar
Vlachodimos K, Papatheodorou EM, Diamantopoulos J, Monokrousos N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ Monit Assess. 2013 Aug;185(8):6921–6932. https://doi.org/10.1007/s10661-013-3075-9VlachodimosKPapatheodorouEMDiamantopoulosJMonok-rousosN.Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ Monit Assess. 2013Aug;185(8):6921–6932. https://doi.org/10.1007/s10661-013-3075-9Search in Google Scholar
Vlamis J. Growth of lettuce and barley as influenced by degree of calcium saturation of soil. Soil Sci. 1949;67(6):453–466.VlamisJ.Growth of lettuce and barley as influenced by degree of calcium saturation of soil. Soil Sci. 1949;67(6):453–466.Search in Google Scholar
Von Holle B, Joseph KA, Largay EF, Lohnes RG. Facilitations between the introduced nitrogen-fixing tree, Robinia pseudoacacia, and nonnative plant species in the glacial outwash upland ecosystem of Cape Cod, MA. Biodivers Conserv. 2006;15:2197–2215. https://doi.org/10.1007/s10531-004-6906-8Von HolleBJosephKALargayEFLohnesRG.Facilitations between the introduced nitrogen-fixing tree, Robinia pseudoacacia, and nonnative plant species in the glacial outwash upland ecosystem of Cape Cod, MA. Biodivers Conserv. 2006;15:2197–2215. https://doi.org/10.1007/s10531-004-6906-8Search in Google Scholar
VROM 93561/b//4-94 1221/027. The Netherlands’ National Environmental Policy Plan 2, VROM 93561/b//4–94 1221/027. The Hague (The Netherlands): Ministry of Housing, Spatial Planning and the Environment; 1994.VROM 93561/b//4-94 1221/027. The Netherlands’ National Environmental Policy Plan 2, VROM 93561/b//4–94 1221/027. The Hague (The Netherlands): Ministry of Housing, Spatial Planning and the Environment; 1994.Search in Google Scholar
Walker RB, Walker HM, Ashworth PR. Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol. 1955 May;30(3):214–221. https://doi.org/10.1104/pp.30.3.214WalkerRBWalkerHMAshworthPR.Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol. 1955May;30(3):214–221. https://doi.org/10.1104/pp.30.3.214Search in Google Scholar
Wang X, Xie H, Ku Y, Yang X, Chen Y, Yang N, Mei X, Cao C. Chemotaxis of Bacillus cereus YL6 and its colonization of Chinese cabbage seedlings. Plant Soil. 2020;447:413–430. https://doi.org/10.1007/s11104-019-04344-yWangXXieHKuYYangXChenYYangNMeiXCaoC.Chemotaxis of Bacillus cereus YL6 and its colonization of Chinese cabbage seedlings. Plant Soil. 2020;447:413–430. https://doi.org/10.1007/s11104-019-04344-ySearch in Google Scholar
Woese CR. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2): 221–271. https://doi.org/10.1128/mr.51.2.221-271.1987WoeseCR.Bacterial evolution. Microbiol Rev. 1987Jun;51(2): 221–271. https://doi.org/10.1128/mr.51.2.221-271.1987Search in Google Scholar
Xu W, Wang F, Zhang M, Ou T, Wang R, Strobel G, Xiang Z, Zhou Z, Xie J. Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiol Res. 2019 Dec;229:126328. https://doi.org/10.1016/j.micres.2019.126328XuWWangFZhangMOuTWangRStrobelGXiangZZhouZXieJ.Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiol Res. 2019Dec;229:126328. https://doi.org/10.1016/j.micres.2019.126328Search in Google Scholar
Yahaghi Z, Shirvani M, Nourbakhsh F, de la Peña TC, Pueyo JJ, Talebi M. Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: Implications for microbe-assisted phytoremediation. J Microbiol Biotechnol. 2018 Jul;28(7):1156–1167. https://doi.org/10.4014/jmb.1712.12038YahaghiZShirvaniMNourbakhshFde la PeñaTCPueyoJJTalebiM.Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: Implications for microbe-assisted phytoremediation. J Microbiol Biotechnol. 2018Jul;28(7):1156–1167. https://doi.org/10.4014/jmb.1712.12038Search in Google Scholar
Yüksek T, Yüksek F. The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey. Catena. 2011 Jan; 84(1):47–53. https://doi.org/10.1016/j.catena.2010.09.002YüksekTYüksekF.The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey. Catena. 2011Jan; 84(1):47–53. https://doi.org/10.1016/j.catena.2010.09.002Search in Google Scholar
Zhang S, Deng Z, Borham A, Ma Y, Wang Y, Hu J, Wang J, Bohu T. Significance of soil siderophore-producing bacteria in evaluation and elevation of crop yield. Horticulturae. 2023 Mar 12; 9(3): 370. https://doi.org/10.3390/horticulturae9030370ZhangSDengZBorhamAMaYWangYHuJWangJBohuT.Significance of soil siderophore-producing bacteria in evaluation and elevation of crop yield. Horticulturae. 2023Mar12; 9(3): 370. https://doi.org/10.3390/horticulturae9030370Search in Google Scholar