Otwarty dostęp

Transcriptome Analysis of Komagataeibacter europaeus CGMCC 20445 Responses to Different Acidity Levels During Acetic Acid Fermentation


Zacytuj

Ali Z, Wang Z, Amir RM, Younas S, Wali A, Adowa N, Ayim I. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2016 Jun;86(3–4):127–151. https://doi.org/10.1024/0300-9831/a000440AliZWangZAmirRMYounasSWaliAAdowaNAyimI. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2016Jun;86(3–4):127151. https://doi.org/10.1024/0300-9831/a00044010.1024/0300-9831/a000440Search in Google Scholar

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010 Oct;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106AndersSHuberW. Differential expression analysis for sequence count data. Genome Biol. 2010Oct;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r10610.1186/gb-2010-11-10-r106Search in Google Scholar

Andrés-Barrao C, Saad MM, Chappuis ML, Boffa M, Perret X, Ortega Pérez R, Barja F. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteomics. 2012 Mar; 75(6):1701–1717. https://doi.org/10.1016/j.jprot.2011.11.027Andrés-BarraoCSaadMMChappuisMLBoffaMPerretXOrtega PérezRBarjaF. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteomics. 2012Mar; 75(6):17011717. https://doi.org/10.1016/j.jprot.2011.11.02710.1016/j.jprot.2011.11.027Search in Google Scholar

Benjak A, Uplekar S, Zhang M, Piton J, Cole ST, Sala C. Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics. 2016 Dec; 17(1):190. https://doi.org/10.1186/s12864-016-2528-2BenjakAUplekarSZhangMPitonJColeSTSalaC. Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics. 2016Dec; 17(1):190. https://doi.org/10.1186/s12864-016-2528-210.1186/s12864-016-2528-2Search in Google Scholar

Chen Y, Bai Y, Li D, Wang C, Xu N, Hu Y. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J Microbiol Biotechnol. 2016 Jan;32(1):14. https://doi.org/10.1007/s11274-015-1961-8ChenYBaiYLiDWangCXuNHuY. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J Microbiol Biotechnol. 2016Jan;32(1):14. https://doi.org/10.1007/s11274-015-1961-810.1007/s11274-015-1961-8Search in Google Scholar

Chinnawirotpisan P, Theeragool G, Limtong S, Toyama H, Adachi OO, Matsushita K. Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J Biosci Bioeng. 2003 Jan;96(6):564–571. https://doi.org/10.1016/S1389-1723(04)70150-4ChinnawirotpisanPTheeragoolGLimtongSToyamaHAdachiOOMatsushitaK. Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J Biosci Bioeng. 2003Jan;96(6):564571. https://doi.org/10.1016/S1389-1723(04)70150-410.1016/S1389-1723(04)70150-4Search in Google Scholar

Clauss-Lendzian E, Vaishampayan A, de Jong A, Landau U, Meyer C, Kok J, Grohmann E. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating. Microbiol Res. 2018 Mar;207:53–64. https://doi.org/10.1016/j.micres.2017.11.006Clauss-LendzianEVaishampayanAde JongALandauUMeyerCKokJGrohmannE. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating. Microbiol Res. 2018Mar;207:5364. https://doi.org/10.1016/j.micres.2017.11.00610.1016/j.micres.2017.11.006Search in Google Scholar

Confer AW, Ayalew S. The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol. 2013 May;163 (3–4):207–222. https://doi.org/10.1016/j.vetmic.2012.08.019ConferAWAyalewS. The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol. 2013May;163 (3–4):207222. https://doi.org/10.1016/j.vetmic.2012.08.01910.1016/j.vetmic.2012.08.019Search in Google Scholar

Filiatrault MJ. Progress in prokaryotic transcriptomics. Curr Opin Microbiol. 2011 Oct;14(5):579–586. https://doi.org/10.1016/j.mib.2011.07.023FiliatraultMJ. Progress in prokaryotic transcriptomics. Curr Opin Microbiol. 2011Oct;14(5):579586. https://doi.org/10.1016/j.mib.2011.07.02310.1016/j.mib.2011.07.023Search in Google Scholar

Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Horinouchi S, Beppu T. The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti. J Ferment Bioeng. 1993 Jan;76(4):270–275. https://doi.org/10.1016/0922-338X(93)90192-BFukayaMTakemuraHTayamaKOkumuraHKawamuraYHorinouchiSBeppuT. The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti. J Ferment Bioeng. 1993Jan;76(4):270275. https://doi.org/10.1016/0922-338X(93)90192-B10.1016/0922-338X(93)90192-BSearch in Google Scholar

Ganguly B, Tewari K, Singh R. Homology modeling, functional annotation and comparative genomics of outer membrane protein H of Pasteurella multocida. J Theor Biol. 2015 Dec;386:18–24. https://doi.org/10.1016/j.jtbi.2015.08.028GangulyBTewariKSinghR. Homology modeling, functional annotation and comparative genomics of outer membrane protein H of Pasteurella multocida. J Theor Biol. 2015Dec;386:1824. https://doi.org/10.1016/j.jtbi.2015.08.02810.1016/j.jtbi.2015.08.02826362105Search in Google Scholar

Gil F, Hernández-Lucas I, Polanco R, Pacheco N, Collao B, Villarreal JM, Nardocci G, Calva E, Saavedra CP. SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. Microbiology. 2009 Aug 01;155(8):2490–2497. https://doi.org/10.1099/mic.0.027433-0GilFHernández-LucasIPolancoRPachecoNCollaoBVillarrealJMNardocciGCalvaESaavedraCP. SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. Microbiology. 2009Aug01;155(8):24902497. https://doi.org/10.1099/mic.0.027433-010.1099/mic.0.027433-019460824Search in Google Scholar

Gomes RJ, Borges MF, Rosa MF, Castro-Gómez RJH, Spinosa WA. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol Biotechnol. 2018;56(2):139–151. https://doi.org/10.17113/ftb.56.02.18.5593GomesRJBorgesMFRosaMFCastro-GómezRJHSpinosaWA. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol Biotechnol. 2018;56(2):139151. https://doi.org/10.17113/ftb.56.02.18.559310.17113/ftb.56.02.18.5593611799030228790Search in Google Scholar

Goto H, Masuko M, Ohnishi M, Tsukamoto Y. [Comparative analysis of phospholipids for two Acetobacters producing acetic acid at high and moderate concentrations] (in Japanese). J Jpn Oil Chem Soc. 2000;49:349–355, 390. https://doi.org/10.5650/jos1996.49.349GotoHMasukoMOhnishiMTsukamotoY. [Comparative analysis of phospholipids for two Acetobacters producing acetic acid at high and moderate concentrations] (in Japanese). J Jpn Oil Chem Soc. 2000;49:349355, 390. https://doi.org/10.5650/jos1996.49.34910.5650/jos1996.49.349Search in Google Scholar

Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochem. 2014 Oct;49(10):1571–1579. https://doi.org/10.1016/j.procbio.2014.07.003GulloMVerzelloniECanonicoM. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochem. 2014Oct;49(10):15711579. https://doi.org/10.1016/j.procbio.2014.07.00310.1016/j.procbio.2014.07.003Search in Google Scholar

Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May;333(6171):330–334. https://doi.org/10.1038/333330a0HemmingsenSMWoolfordCvan der ViesSMTillyKDennisDTGeorgopoulosCPHendrixRWEllisRJ. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988May;333(6171):330334. https://doi.org/10.1038/333330a010.1038/333330a02897629Search in Google Scholar

Higashide T, Okumura H, Kawamura Y, Teranishi K, Hisamatsu M, Yamada T. [Membrane components and cell form of Acetobactor polyoxogenes (vinegar producing strain) under high acidic conditions] (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi. 1996;43(2):117–123. https://doi.org/10.3136/nskkk.43.117HigashideTOkumuraHKawamuraYTeranishiKHisamatsuMYamadaT. [Membrane components and cell form of Acetobactor polyoxogenes (vinegar producing strain) under high acidic conditions] (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi. 1996;43(2):117123. https://doi.org/10.3136/nskkk.43.11710.3136/nskkk.43.117Search in Google Scholar

Hong H, Patel DR, Tamm LK, van den Berg B. The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem. 2006 Mar;281(11):7568–7577. https://doi.org/10.1074/jbc.M512365200HongHPatelDRTammLKvan den BergB. The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem. 2006Mar;281(11):75687577. https://doi.org/10.1074/jbc.M51236520010.1074/jbc.M51236520016414958Search in Google Scholar

Kondo K, Beppu T, Horinouchi S. Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol. 1995 Sep;177(17):5048–5055. https://doi.org/10.1128/jb.177.17.5048-5055.1995KondoKBeppuTHorinouchiS. Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol. 1995Sep;177(17):50485055. https://doi.org/10.1128/jb.177.17.5048-5055.199510.1128/jb.177.17.5048-5055.19951772837665483Search in Google Scholar

Matsushita K, Toyama H, Adachi O. Chapter 4: Respiratory chains in acetic acid bacteria: membranebound periplasmic sugar and alcohol respirations. In: Zannoni D, editor. Respiration in Archaea and Bacteria. Advances in photosynthesis and respiration, vol. 16. Dordrecht (The Netherlands): Springer; 2004. p. 81–99. https://doi.org/10.1007/978-1-4020-3163-2_4MatsushitaKToyamaHAdachiO. Chapter 4: Respiratory chains in acetic acid bacteria: membranebound periplasmic sugar and alcohol respirations. In: ZannoniD, editor. Respiration in Archaea and Bacteria. Advances in photosynthesis and respiration, vol. 16. Dordrecht (The Netherlands): Springer; 2004. p. 8199. https://doi.org/10.1007/978-1-4020-3163-2_410.1007/978-1-4020-3163-2_4Search in Google Scholar

Mullins EA, Francois JA, Kappock TJ. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol. 2008 Jul 15;190(14):4933–4940. https://doi.org/10.1128/JB.00405-08MullinsEAFrancoisJAKappockTJ. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol. 2008Jul15;190(14):49334940. https://doi.org/10.1128/JB.00405-0810.1128/JB.00405-08Search in Google Scholar

Nakano S, Fukaya M, Horinouchi S. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiol Lett. 2004 Jun;235(2):315–322. https://doi.org/10.1111/j.1574-6968.2004.tb09605.xNakanoSFukayaMHorinouchiS. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiol Lett. 2004Jun;235(2):315322. https://doi.org/10.1111/j.1574-6968.2004.tb09605.x10.1111/j.1574-6968.2004.tb09605.xSearch in Google Scholar

Nguyen VD, Wolf C, Mäder U, Lalk M, Langer P, Lindequist U, Hecker M, Antelmann H. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis. Proteomics. 2007 May;7(9):1391–1408. https://doi.org/10.1002/pmic.200700008NguyenVDWolfCMäderULalkMLangerPLindequistUHeckerMAntelmannH. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis. Proteomics. 2007May;7(9):13911408. https://doi.org/10.1002/pmic.20070000810.1002/pmic.200700008Search in Google Scholar

Okamoto-Kainuma A, Ishikawa M, Nakamura H, Fukazawa S, Tanaka N, Yamagami K, Koizumi Y. Characterization of rpoH in Acetobacter pasteurianus NBRC3283. J Biosci Bioeng. 2011 Apr;111(4):429–432. https://doi.org/10.1016/j.jbiosc.2010.12.016Okamoto-KainumaAIshikawaMNakamuraHFukazawaSTanakaNYamagamiKKoizumiY. Characterization of rpoH in Acetobacter pasteurianus NBRC3283. J Biosci Bioeng. 2011Apr;111(4):429432. https://doi.org/10.1016/j.jbiosc.2010.12.01610.1016/j.jbiosc.2010.12.016Search in Google Scholar

Okamoto-Kainuma A, Yan W, Kadono S, Tayama K, Koizumi Y, Yanagida F. Cloning and characterization of groESL operon in Acetobacter aceti. J Biosci Bioeng. 2002;94(2):140–147. https://doi.org/10.1016/S1389-1723(02)80134-7Okamoto-KainumaAYanWKadonoSTayamaKKoizumiYYanagidaF. Cloning and characterization of groESL operon in Acetobacter aceti. J Biosci Bioeng. 2002;94(2):140147. https://doi.org/10.1016/S1389-1723(02)80134-710.1016/S1389-1723(02)80134-7Search in Google Scholar

Qi Z, Yang H, Xia X, Quan W, Wang W, Yu X. Achieving high strength vinegar fermentation via regulating cellular growth status and aeration strategy. Process Biochem. 2014 Jul;49(7):1063–1070. https://doi.org/10.1016/j.procbio.2014.03.018QiZYangHXiaXQuanWWangWYuX. Achieving high strength vinegar fermentation via regulating cellular growth status and aeration strategy. Process Biochem. 2014Jul;49(7):10631070. https://doi.org/10.1016/j.procbio.2014.03.01810.1016/j.procbio.2014.03.018Search in Google Scholar

Qiu X, Zhang Y, Hong H. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express. 2021 Dec;11(1):29. https://doi.org/10.1186/s13568-021-01189-6QiuXZhangYHongH. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express. 2021Dec;11(1):29. https://doi.org/10.1186/s13568-021-01189-610.1186/s13568-021-01189-6788978233595734Search in Google Scholar

Ryngajłło M, Jacek P, Cielecka I, Kalinowska H, Bielecki S. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Appl Microbiol Biotechnol. 2019 Aug;103(16):6673–6688. https://doi.org/10.1007/s00253-019-09904-xRyngajłłoMJacekPCieleckaIKalinowskaHBieleckiS. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Appl Microbiol Biotechnol. 2019Aug;103(16):66736688. https://doi.org/10.1007/s00253-019-09904-x10.1007/s00253-019-09904-x666768231168651Search in Google Scholar

Sakurai K, Arai H, Ishii M, Igarashi Y. Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology. 2011 Mar 01;157(3):899–910. https://doi.org/10.1099/mic.0.045906-0SakuraiKAraiHIshiiMIgarashiY. Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology. 2011Mar01;157(3):899910. https://doi.org/10.1099/mic.0.045906-010.1099/mic.0.045906-021081762Search in Google Scholar

Samad A, Azlan A, Ismail A. Therapeutic effects of vinegar: a review. Curr Opin Food Sci. 2016 Apr;8:56–61. https://doi.org/10.1016/j.cofs.2016.03.001SamadAAzlanAIsmailA. Therapeutic effects of vinegar: a review. Curr Opin Food Sci. 2016Apr;8:5661. https://doi.org/10.1016/j.cofs.2016.03.00110.1016/j.cofs.2016.03.001Search in Google Scholar

Tesfaye W, Morales ML, García-Parrilla MC, Troncoso AM. Wine vinegar: technology, authenticity and quality evaluation. Trends Food Sci Technol. 2002 Jan;13(1):12–21. https://doi.org/10.1016/S0924-2244(02)00023-7TesfayeWMoralesMLGarcía-ParrillaMCTroncosoAM. Wine vinegar: technology, authenticity and quality evaluation. Trends Food Sci Technol. 2002Jan;13(1):1221. https://doi.org/10.1016/S0924-2244(02)00023-710.1016/S0924-2244(02)00023-7Search in Google Scholar

Tjaden B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 2015 Dec;16(1):1. https://doi.org/10.1186/s13059-014-0572-2TjadenB. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 2015Dec;16(1):1. https://doi.org/10.1186/s13059-014-0572-210.1186/s13059-014-0572-2431679925583448Search in Google Scholar

Toyama H, Mathews FS, Adachi O, Matsushita K. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys. 2004 Aug;428(1):10–21. https://doi.org/10.1016/j.abb.2004.03.037ToyamaHMathewsFSAdachiOMatsushitaK. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys. 2004Aug;428(1):1021. https://doi.org/10.1016/j.abb.2004.03.03710.1016/j.abb.2004.03.03715234265Search in Google Scholar

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28(5):511–515. https://doi.org/10.1038/nbt.1621TrapnellCWilliamsBAPerteaGMortazaviAKwanGvan BarenMJSalzbergSLWoldBJPachterL. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28(5):511515. https://doi.org/10.1038/nbt.162110.1038/nbt.1621314604320436464Search in Google Scholar

Trček J, Mira NP, Jarboe LR. Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol. 2015 Aug;99(15):6215–6229. https://doi.org/10.1007/s00253-015-6762-3TrčekJMiraNPJarboeLR. Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol. 2015Aug;99(15):62156229. https://doi.org/10.1007/s00253-015-6762-310.1007/s00253-015-6762-326142387Search in Google Scholar

Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol. 2006 Apr;70(3):366–373. https://doi.org/10.1007/s00253-005-0073-zTrcekJToyamaHCzubaJMisiewiczAMatsushitaK. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol. 2006Apr;70(3):366373. https://doi.org/10.1007/s00253-005-0073-z10.1007/s00253-005-0073-z16133326Search in Google Scholar

Wang B, Shao Y, Chen F. Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol. 2015 Feb;31(2):255–263. https://doi.org/10.1007/s11274-015-1799-0WangBShaoYChenF. Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol. 2015Feb;31(2):255263. https://doi.org/10.1007/s11274-015-1799-010.1007/s11274-015-1799-025575804Search in Google Scholar

Wu X, Yao H, Cao L, Zheng Z, Chen X, Zhang M, Wei Z, Cheng J, Jiang S, Pan L, et al. Improving acetic acid production by Over-Expressing PQQ-ADH in Acetobacter pasteurianus. Front Microbiol. 2017 Sep 06;8:1713. https://doi.org/10.3389/fmicb.2017.01713WuXYaoHCaoLZhengZChenXZhangMWeiZChengJJiangSPanL. Improving acetic acid production by Over-Expressing PQQ-ADH in Acetobacter pasteurianus. Front Microbiol. 2017Sep06;8:1713. https://doi.org/10.3389/fmicb.2017.0171310.3389/fmicb.2017.01713559221428932219Search in Google Scholar

Xia K, Zang N, Zhang J, Zhang H, Li Y, Liu Y, Feng W, Liang X. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol. 2016 Dec;238:241–251. https://doi.org/10.1016/j.ijfoodmicro.2016.09.016XiaKZangNZhangJZhangHLiYLiuYFengWLiangX. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol. 2016Dec;238:241251. https://doi.org/10.1016/j.ijfoodmicro.2016.09.01610.1016/j.ijfoodmicro.2016.09.01627681379Search in Google Scholar

Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol. 2012 Jun;62(2):849–859. https://doi.org/10.1007/s13213-011-0288-4YamadaYYukphanPVuHTLMuramatsuYOchaikulDNakagawaY. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol. 2012Jun;62(2):849859. https://doi.org/10.1007/s13213-011-0288-410.1007/s13213-011-0288-4Search in Google Scholar

Yang H, Yu Y, Fu C, Chen F. Bacterial acid resistance toward organic weak acid revealed by RNA-Seq transcriptomic analysis in Acetobacter pasteurianus. Front Microbiol. 2019 Aug 6;10:1616. https://doi.org/10.3389/fmicb.2019.01616YangHYuYFuCChenF. Bacterial acid resistance toward organic weak acid revealed by RNA-Seq transcriptomic analysis in Acetobacter pasteurianus. Front Microbiol. 2019Aug6;10:1616. https://doi.org/10.3389/fmicb.2019.0161610.3389/fmicb.2019.01616669105131447789Search in Google Scholar

Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14YoungMDWakefieldMJSmythGKOshlackA. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r1410.1186/gb-2010-11-2-r14287287420132535Search in Google Scholar

Zhai L, Xue Y, Song Y, Xian M, Yin L, Zhong N, Xia G, Ma Y. Overexpression of AaPal, a peptidoglycan-associated lipoprotein from Alkalomonas amylolytica, improves salt and alkaline tolerance of Escherichia coli and Arabidopsis thaliana. Biotechnol Lett. 2014 Mar;36(3):601–607. https://doi.org/10.1007/s10529-013-1398-9ZhaiLXueYSongYXianMYinLZhongNXiaGMaY. Overexpression of AaPal, a peptidoglycan-associated lipoprotein from Alkalomonas amylolytica, improves salt and alkaline tolerance of Escherichia coli and Arabidopsis thaliana. Biotechnol Lett. 2014Mar;36(3):601607. https://doi.org/10.1007/s10529-013-1398-910.1007/s10529-013-1398-924249101Search in Google Scholar

eISSN:
2544-4646
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology