1. bookTom 29 (2023): Zeszyt 2 (June 2023)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2353-7779
Pierwsze wydanie
30 Mar 2018
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Electrical properties for cold sprayed Nano copper oxide thin films

Data publikacji: 26 Apr 2023
Tom & Zeszyt: Tom 29 (2023) - Zeszyt 2 (June 2023)
Zakres stron: 225 - 230
Otrzymano: 05 Jul 2022
Przyjęty: 31 Mar 2023
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2353-7779
Pierwsze wydanie
30 Mar 2018
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Khan, S.,et al., 2020. Control of particle size in flame spray pyrolysis of Tb-doped Y2O3 for bio-imaging. Materials (Basel), 13(13), 1–14, DOI: 10.3390/ma13132987. Otwórz DOISearch in Google Scholar

Jawad, M.F., Ismail, R.A., Yahea, K.Z., 2011. Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition. J. Mater. Sci. Mater. Electron., 22(9), 1244-1247, DOI: 10.1007/s10854-011-0294-0. Otwórz DOISearch in Google Scholar

Gao, F., Liu, X.J., Zhang, J.S., Song, M.Z., Li, N., 2012. Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering. J. Appl. Phys, 111(8), 2–6, DOI: 10.1063/1.4704382. Otwórz DOISearch in Google Scholar

Dhaouadi, M., 2018. Physical Properties of Copper Oxide Thin Films Prepared by Sol–Gel Spin–Coating Method. Am. J. Phys. Appl, 6(2), 43, DOI: 10.11648/j.ajpa.20180602.13. Otwórz DOISearch in Google Scholar

Wang, Y., et al., 2016. Electronic structures of Cu2O, Cu4O3, and CuO: A joint experimental and theoretical study. Phys. Rev. B, 94(24), DOI: 10.1103/PhysRevB.94.245418. Otwórz DOISearch in Google Scholar

Korzhavyi, P.A., Johansson, B., 2011. Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation. Swedish Nucl. Fuel Waste Manag. Co, no. October, 8-22. Search in Google Scholar

Zheng, W., Chen, Y., Peng, X., Zhong, K., Lin, Y., Huang, Z., 2018. The phase evolution and physical properties of binary copper oxide thin films prepared by reactive magnetron sputtering. Materials (Basel), 10(7), 1-13, DOI: 10.3390/ma11071253. Otwórz DOISearch in Google Scholar

Choudhary, S., et al., 2013. Nanostructured CuO/SrTiO3 bilayered thin films for photoelectrochemical water splitting. J. Solid State Electrochem, 17(9), 2531-2538, DOI: 10.1007/s10008-013-2139-7. Otwórz DOISearch in Google Scholar

Omar, N.I., Selvami, S., Kaisho M., Yamada M., Yasui T., Fukumoto M., 2020. Deposition of titanium dioxide coating by the cold-spray process on annealed stainless steel substrate. Coatings, 10(10), 1-13, DOI: 10.3390/coatings10100991. Otwórz DOISearch in Google Scholar

Srikanth, A., Mohammed Thalib Basha, G., Venkateshwarlu, B., 2019. A Brief Review on Cold Spray Coating Process. Mater. Today Proc., 22, 1390-1397, DOI: 10.1016/j.matpr.2020.01.482. Otwórz DOISearch in Google Scholar

Chakrabarty, R., Song, J., 2020. Numerical simulations of ceramic deposition and retention in metal-ceramic composite cold spray. Surf. Coatings Technol, 385, 125324, DOI: 10.1016/j.surfcoat.2019.125324. Otwórz DOISearch in Google Scholar

Mason, T.G., 1999. New fundamental concepts in emulsion rheology [Review]. Curr. Opin. Colloid Interface Sci., 4(3), 231-238, DOI: 10.1016/S1359-0294(99)00035-7. Otwórz DOISearch in Google Scholar

Singh, S., Raman, R.K.S., Berndt, C.C., Singh H., 2021. Influence of cold spray parameters on bonding mechanisms: A review. Metals (Basel)., 11(12), DOI: 10.3390/met11122016. Otwórz DOISearch in Google Scholar

Yu, M., Li, W., Guo, X., Liao, H., 2013. Impacting behavior of large oxidized copper particles in cold spraying. J. Therm. Spray Technol., 22(2-3), 433-440, DOI: 10.1007/s11666-012-9849-8. Otwórz DOISearch in Google Scholar

Kim, D.Y., et al., 2013. Cold spray deposition of copper electrodes on silicon and glass substrates. J. Therm. Spray Technol., 22(7), 1092-1102, DOI: 10.1007/s11666-013-9953-4. Otwórz DOISearch in Google Scholar

Iqbal, Singh, Gursharan, Kaur, Bedi, R.K., 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Applied Surface Science, 257, 9546-9554. Search in Google Scholar

Buppachat, Toboonsunga, Pisith, Singjai, 2011. Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. Journal of Alloys and Compounds, 509, 4132-4137. Search in Google Scholar

Zoolfakar, A.S., Rani, R.A., Morfa, A.J., O’Mullane, A.P., Kalantar-Zadeh, K., 2014. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C, 2(27), 5247-5270, DOI: 10.1039/c4tc00345d. Otwórz DOISearch in Google Scholar

Michael, J.J., Iniyan S., 2015. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers. Manag., 95, 160-169, DOI: 10.1016/j.enconman.2015.02.017. Otwórz DOISearch in Google Scholar

Yu, M., Li, W., Guo, X., Liao, H., 2013. Impacting behavior of large oxidized copper particles in cold spraying. J. Therm. Spray Technol., 22(2–3), 433-440, DOI: 10.1007/s11666-012-9849-8. Otwórz DOISearch in Google Scholar

Singh, I., Kaur, G., Bedi, R.K., 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Appl. Surf. Sci., 257(22), 9546–9554, DOI: 10.1016/j.apsusc.2011.06.061. Otwórz DOISearch in Google Scholar

Johan, M.R., Suan, M.S.M., Hawari, N.L., Ching, H.A., 2011. Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int. J. Electrochem. Sci., 6(12), 6094-6104. Search in Google Scholar

Fuentes-Perez. M.E., Dillingham M.S., Moreno-Herrero F., 2013. AFM volumetric methods for the characterization of proteins and nucleic acids, Methods, 60(2), 113-121, DOI: 10.1016/j.ymeth.2013.02.005. Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD