Otwarty dostęp

Radiotherapy in combination with vascular-targeted therapies


Zacytuj

Ringborg U, Bergqvist D, Brorsson B, Cavallin-Ståhl E, Ceberg J, Einhorn N, et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001—summary and conclusions. Acta Oncol 2003; 42: 357-65.10.1080/02841860310010826Search in Google Scholar

McGinn CJ, Shewach, DS, Lawrence TS. Radiosensitizing nucleosides. J Natl Cancer Inst 1996; 88: 1193-203.10.1093/jnci/88.17.1193Search in Google Scholar

Wachsberger P, Burd R, Dicker AP. Improving tumor response to radiotherapy by targeting angiogenesis signaling pathways. Hematol Oncol Clin North Am 2004; 18: 1039-57.10.1016/j.hoc.2004.06.007Search in Google Scholar

Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182-6.10.1056/NEJM197111182852108Search in Google Scholar

Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-57.10.1038/35025220Search in Google Scholar

Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353-64.10.1016/S0092-8674(00)80108-7Search in Google Scholar

Los M, Voest EE. The potential role of antivascular therapy in the adjuvant and neoadjuvant treatment of cancer. Semin Oncol 2001; 28: 93-105.10.1016/S0093-7754(01)90047-8Search in Google Scholar

Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 2001; 106: 148-56.10.1159/00004661011815711Search in Google Scholar

Jain RK. Molecular regulation of vessel maturation. Nat Med 2003; 9: 685-93.10.1038/nm0603-68512778167Search in Google Scholar

Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-4.10.1038/386671a09109485Search in Google Scholar

Liu W, Ahmad SA, Reinmuth N, Shaheen RM, Jung YD, Fan F, et al. Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 2000; 5: 323-8.10.1023/A:1009679307513Search in Google Scholar

Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Moll Med 2005; 9: 777-94.10.1111/j.1582-4934.2005.tb00379.x674009816364190Search in Google Scholar

Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306-9.10.1126/science.24799862479986Search in Google Scholar

Nicosia RF, Tchao R, Leighton J. Interactions between newly formed endothelial channels and carcinoma cells in plasma clot culture. Clin Exp Metastasis 1986; 4: 91-104.10.1007/BF001190762424658Search in Google Scholar

Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O'Reilly MS. Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 2001; 61: 2207-11.Search in Google Scholar

O'Reilly MS. Antiangiogenesis: basic principles. In: Rosenberg SA, editor. Principles and practice of the biologic therapy of cancer. 3rd edition. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 827-43.Search in Google Scholar

Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7: 987-9.10.1038/nm0901-98711533692Search in Google Scholar

Jain RK. Determinants of tumor blood flow: a review. Cancer Res 1988; 48: 2641-58.Search in Google Scholar

Jain RK. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng1999; 1: 241-63.10.1146/annurev.bioeng.1.1.24111701489Search in Google Scholar

Wouters BG, Koritzinsky M. The tumor microenvironment and cellular hypoxia responses. In: Joiner M, van der Kogel AJ, editors. Basic Clinical Radiobiology. 4th edition. London: A Hodder Arnold Publication; 2009. p. 217-32.10.1201/b13224-17Search in Google Scholar

Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9: 653-60.10.1038/nm0603-65312778163Search in Google Scholar

Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23: 1011-27.10.1200/JCO.2005.06.08115585754Search in Google Scholar

Harris AL. Hypoxia - a key regulatory factor in tumor growth. Nat Rev Cancer 2002; 2: 38-47.10.1038/nrc70411902584Search in Google Scholar

Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004; 5: 429-41.10.1016/S1535-6108(04)00115-1Search in Google Scholar

Gu J, Yamamoto H, Ogawa M, Ngan CY, Danno K, Hemmi H, et al. Hypoxiainduced up-regulation of angiopoietin-2 in colorectal cancer. Oncol Rep 2006; 15: 779-83.Search in Google Scholar

Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995; 92: 4606-10.10.1073/pnas.92.10.4606Search in Google Scholar

Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos K, Pissakas G, Gatter KC, et al. Squamous cell head and neck cancer: evidence of angiogenic regeneration during radiotherapy. Anticancer Res 2001; 21: 4301-9.Search in Google Scholar

Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999; 59: 3374-8.Search in Google Scholar

Chapman JD, Dugle DL, Reuvers AP, Meeker BE, Borsa J. Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med 1974; 26: 383-9.10.1080/09553007414551361Search in Google Scholar

Patterson DM, Rustin GJ. Vascular damaging agents. Clin Oncol 2007; 19: 443-56.10.1016/j.clon.2007.03.014Search in Google Scholar

Giaccia AJ. Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 1996; 6: 46-58.10.1016/S1053-4296(96)80035-XSearch in Google Scholar

Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O, et al. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol 2002; 12: 105-12.10.1006/scbi.2001.041812027582Search in Google Scholar

Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR, et al. Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 2005; 11: 416-20.10.1158/1078-0432.416.11.2Search in Google Scholar

Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumor activity. Nat Rev Cancer 2008; 8: 579-91.10.1038/nrc240318596824Search in Google Scholar

Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW, et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 2005; 24: 2647-53.10.1038/sj.onc.120824615735759Search in Google Scholar

Wu W, Onn A, Isobe T, Itasaka S, Langley RR, Shitani T, et al. Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade. Mol Cancer Ther 2007; 6: 471-83.10.1158/1535-7163.MCT-06-041617308046Search in Google Scholar

Kamensek U, Sersa G. Targeted gene therapy in radiotherapy. Radiol Oncol 2008; 42: 115-35.10.2478/v10019-008-0009-1Search in Google Scholar

Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335-42.10.1056/NEJMoa032691Search in Google Scholar

Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355: 2542-50.10.1056/NEJMoa061884Search in Google Scholar

Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 2005; 23: 792-9.10.1200/JCO.2005.05.098Search in Google Scholar

Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: A randomized double-blind phase III trial. Lancet 2007; 370: 2103-11.10.1016/S0140-6736(07)61904-7Search in Google Scholar

Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007; 356: 115-24.10.1056/NEJMoa065044Search in Google Scholar

Huang J, Soffer SZ, Kim ES, McCrudden KW, Huang J, New T, et al. Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res 2004; 2: 36-42.10.1158/1541-7786.36.2.1Search in Google Scholar

Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res 2004; 10: 415-27.10.1158/1078-0432.CCR-0642-03Search in Google Scholar

Baguley BC. Antivascular therapy of cancer: DMXAA. Lancet Oncol 2003; 4: 141-8.10.1016/S1470-2045(03)01018-0Search in Google Scholar

Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res 2001; 61: 6413-22.Search in Google Scholar

Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M. Electrochemotherapy in treatment of tumours. EJSO 2008; 34: 232-40.10.1016/j.ejso.2007.05.01617614247Search in Google Scholar

Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, Sentjurc M, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Brit J Cancer 2008, 98: 388-98.10.1038/sj.bjc.6604168236146418182988Search in Google Scholar

Sersa G, Krzic M, Sentjurc M, Ivanusa T, Beravs K, Kotnik V, et al. Reduced blood flow and oxygenation in SA-1 tumours after electrochemotherapy with cisplatin. Brit J Cancer 2002; 87: 1047-54.10.1038/sj.bjc.6600606236431412434299Search in Google Scholar

Coer A, Cemazar M, Plaza N, Sersa G. Comparison between hypoxic markers pimonidazole and glucose transporter 1 (Glut-1) in murine fibrosarcoma tumours after electrochemotherapy. Radiol Oncol 2009; 43: 195-202.Search in Google Scholar

Citrin D, Camphausen K. Advancement of antiangiogenic and vascular disrupting agents combined with radiation. In: Mehta MP, editor. Radiation oncology advances. New York: Springer Science; 2008. p. 150-68.10.1007/978-0-387-36744-6_8Search in Google Scholar

Teicher BA, Holden SA, Ara G, Sotomayor EA, Huang ZD, Chen YN, et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer 1994; 57: 920-5.10.1002/ijc.2910570624Search in Google Scholar

Teicher BA, Holden SA, Ara G, Korbut T, Menon K. Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol 1996; 38: 169-77.10.1007/s002800050466Search in Google Scholar

Murata R, Nishimura Y, Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 1997; 37: 1107-13.10.1016/S0360-3016(96)00628-1Search in Google Scholar

Lund EL, Bastholm L, Kristjansen PE. Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin Cancer Res 2000; 6: 971-8.Search in Google Scholar

Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA, et al. Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature 1998; 394: 287-91.10.1038/284129685160Search in Google Scholar

Hanna NN, Seetharam S, Mauceri HJ, Beckett MA, Jaskowiak NT, Salloum RM, et al. Antitumor interaction of short-course endostatin and ionizing radiation. Cancer J 2000; 6: 287-93.Search in Google Scholar

Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, et al. Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999; 59: 3374-8.Search in Google Scholar

Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, et al. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 2000; 60: 5565-70.Search in Google Scholar

Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 2002; 8: 47-54.10.1097/00130404-200201000-0000911895203Search in Google Scholar

Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H, et al. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 2001; 61: 2413-9.Search in Google Scholar

Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiationinduced longterm control of human tumor xenografts. Cancer Res 2001; 61: 39-44.Search in Google Scholar

Fenton BM, Paoni SF, Ding I. Pathophysiological effects of vascular endothelial growth factor receptor-2-blocking antibody plus fractionated radiotherapy on murine mammary tumors. Cancer Res 2004; 64: 5712-9.10.1158/0008-5472.CAN-04-043415313911Search in Google Scholar

Hess C, Vuong V, Hegyi I, Riesterer O, Wood J, Fabbro D, et al. Effect of VEGF receptor inhibitor PTK787/ZK222548 combined with ionizing radiation on endothelial cells and tumor growth. Brit J Cancer 2001; 85: 2010-6.10.1054/bjoc.2001.2166236401011747347Search in Google Scholar

Williams KJ, Telfer BA, Brave S, Kendrew J, Whittaker L, Stratford IJ, et al. ZD6474, a potent inhibitor of vascular endothelial growth factor signaling, combined with radiotherapy: schedule-dependent enhancement of antitumor activity. Clin Cancer Res 2004; 10: 8587-93.10.1158/1078-0432.CCR-04-114715623642Search in Google Scholar

Brazelle WD, Shi W, Siemann DW. VEGF associated tyrosine kinase inhibition increases the tumor response to single and fractionated dose radiotherapy. Int J Radiat Oncol Biol Phys 2006; 65: 836-41.10.1016/j.ijrobp.2006.02.02316751064Search in Google Scholar

Cao C, Albert JM, Geng L, Ivy PS, Sandler A, Johnson DH, et al. Vascular endothelial growth factor tyrosine kinase inhibitor AZD2171 and fractionated radiotherapy in mouse models of lung cancer. Cancer Res 2006; 66: 11409-15.10.1158/0008-5472.CAN-06-2414Search in Google Scholar

Williams KJ, Telfer BA, Shannon AM, Babur M, Stratford IJ, Wedge SR. Combining radiotherapy with AZD2171, a potent inhibitor of vascular endothelial growth factor signaling: pathophysiologic effects and therapeutic benefit. Mol Cancer Ther 2007; 6: 599-606.10.1158/1535-7163.MCT-06-0508Search in Google Scholar

Schueneman AJ, Himmelfarb E, Geng L, Tan J, Donnelly E, Mendel D, et al. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 2003; 63: 4009-16.Search in Google Scholar

Lu B, Geng L, Musiek A, Tan J, Cao C, Donnelly E, et al. Broad spectrum receptor tyrosine kinase inhibitor, SU6668, sensitizes radiation via targeting survival pathway of vascular endothelium. Int J Radiat Oncol Biol Phys 2004; 58: 844-50.10.1016/j.ijrobp.2003.10.049Search in Google Scholar

Wachberger P, Burd R, Dicke AP. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 2003; 9: 1957-71.Search in Google Scholar

Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58-62.10.1126/science.1104819Search in Google Scholar

Shannon, A. M., Williams, K. J. Antiangiogenics and radiotherapy. J Pharm Pharmacol 2008; 60: 1029-36.10.1211/jpp.60.8.0009Search in Google Scholar

Horsman MR, Siemann DW. Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 2006; 66:11520-39.10.1158/0008-5472.CAN-06-2848Search in Google Scholar

Chaplin DJ, Hill SA. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys 2002; 54: 1491-6.10.1016/S0360-3016(02)03924-XSearch in Google Scholar

Sersa G, Willingham V, Milas L. Anti-tumor effects of tumor necrosis factor alone or combined with radiotherapy. Int J Cancer 1988; 42: 129-34.10.1002/ijc.2910420124Search in Google Scholar

Nishiguchi I, Willingham V, Milas L. Tumor necrosis factor as an adjunct to fractionated radiotherapy in the treatment of murine tumors. Int J Radiat Oncol Biol Phys 1990; 18: 555-8.10.1016/0360-3016(90)90060-WSearch in Google Scholar

Horsman MR, Murata R, Overgaard J. Improving local tumor control by combining vascular targeting drugs, mild hyperthermia, and radiation. Acta Oncol 2001; 40: 497-503.10.1080/02841860175028823511504310Search in Google Scholar

Wilson WW, Li AE, Cowan D, Siim BG. Enhancement of tumor radiation response by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 1998; 42: 905-8.10.1016/S0360-3016(98)00358-7Search in Google Scholar

Murata R, Siemann DW, Overgaard J, Horsman MR. Improved tumor response by combining radiation and the vascular damaging drug 5,6-dimethylxanthenone- 4-acetic acid. Radiat Res 2001; 156: 503-9.10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2Search in Google Scholar

Li L, Rojiani A, Siemann DW. Targeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapy. Int J Radiat Oncol Biol Phys 1998; 42: 899-903.10.1016/S0360-3016(98)00320-4Search in Google Scholar

Chaplin DJ, Pettit GR, Hill SA. Anti-vascular approaches to solid tumor therapy: evaluation of combretastatin A4 phosphate. Anticancer Res 1999; 19: 189-96.Search in Google Scholar

Murata R, Siemann DW, Overgaard J, Horsman MR. Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiother Oncol 2001; 60: 155-61.10.1016/S0167-8140(01)00384-XSearch in Google Scholar

Li L, Rojiani AM, Siemann DW. Preclinical evaluations of therapies combining the vascular targeting agent combretastatin A-4 disodium phosphate and conventional anticancer therapies in the treatment of Kaposi's sarcoma. Acta Oncol 2002; 41: 91-7.10.1080/028418602317314127Search in Google Scholar

Ahmed B, Landuyt W, Griffioen AW, van Oosterom A, van den Bogaert W, Lambin P. In vivo antitumor effect of combretastatin A-4 phosphate added to fractionated radiation. Anticancer Res 2006; 26: 307-10.Search in Google Scholar

Horsman MR, Murata R. Vascular targeting effects of ZD6126 in a C3H mouse mammary carcinoma and the enhancement of radiation response. Int J Radiat Oncol Biol Phys 2003; 57: 1047-55.10.1016/S0360-3016(03)00769-7Search in Google Scholar

Raben D, Bianco C, Damiano V, Bianco R, Melisi D, Mignogna C, et al. Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human nonsmall cell lung cancer xenograft model. Mol Cancer Ther 2004; 3: 977-83.10.1158/1535-7163.977.3.8Search in Google Scholar

Wachsberger PR, Burd R, Marero N, Daskalakis C, Ryan A, McCue P, et al. Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma. Clin Cancer Res 2005; 11: 835-42.10.1158/1078-0432.835.11.2Search in Google Scholar

Siemann DW, Rojiani AM. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors. Int J Radiat Oncol Biol Phys 2005; 62: 846-53.10.1016/j.ijrobp.2005.02.048Search in Google Scholar

Shi W, Siemann DW. Preclinical studies of the novel vascular disrupting agent MN-029. Anticancer Res 2005; 25: 3899-904.Search in Google Scholar

Siemann DW, Horsman MR. Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert Rev Anticancer Ther 2004; 4: 321-7.10.1586/14737140.4.2.321Search in Google Scholar

Sersa G, Kranjc S, Cemazar M. Improvement of combined modality therapy with cisplatin and radiation using electroporation of tumors. Int J Radiat Oncol Biol Phys 2000; 46: 1037-41.10.1016/S0360-3016(99)00464-2Search in Google Scholar

Kranjc S, Cemazar M, Grosel A, Scancar J, Sersa G. Electroporation of LPB sarcoma cells in vitro and tumors in vivo increases radiosensitizing effect of cisplatin. Anticancer Res 2003; 23: 275-82.Search in Google Scholar

Kranjc S, Grosel A, Cemazar M, Sentjurc M, Sersa G. Improvement of combined modality therapy with bleomycin and radiation using electroporation of LPB sarcoma cells and tumors in mice. BMC Cancer 2005; 5: 115.10.1186/1471-2407-5-115Search in Google Scholar

Kranjc S, Tevz G, Kamensek U, Vidic S, Cemazar M, Sersa G. Radiosensitizing effect of electrochemotherapy in a fractionated radiation regime in radiosensitive murine sarcoma and radioresistant adenocarcinoma tumor model. Radiat Res 2009; 172: 677-85.10.1667/RR1873.119929414Search in Google Scholar

Sersa G, Cemazar M, Rudolf Z, Fras AP. Adenocarcinoma skin metastases treated by electrochemotherapy with cisplatin combined with radiation. Radiol Oncol 1999; 33: 291-6.Search in Google Scholar

Tamaskar I, Pili R. Update on novel agents in renal cell carcinoma. Expert Rev Anticancer Ther 2009; 9: 1817-27.10.1586/era.09.15719954293Search in Google Scholar

Zhu AX, Duda DG, Sahani DV, Jain RK. Development of sunitinib in hepatocellular carcinoma: rationale, early clinical experience, and correlative studies. Cancer J 2009; 15: 263-8.10.1097/PPO.0b013e3181af5e35479251919672141Search in Google Scholar

Ocvirk J. Advances in the treatment of metastatic colorectal carcinoma. Radiol Oncol 2009; 43: 1-8.10.2478/v10019-009-0004-1Search in Google Scholar

Pallis AG, Serfass L, Dziadziusko R, van Meerbeeck JP, Fennell D, Lacombe D, et al. Targeted therapies in the treatment of advanced/metastatic NSCLC. Eur J Cancer 2009; 45: 2473-87.10.1016/j.ejca.2009.06.00519596191Search in Google Scholar

Yang SX. Bevacizumab and breast cancer: current therapeutic progress and future perspectives. Expert Rev Anticancer Ther 2009; 9: 1715-25.10.1586/era.09.153281903919954282Search in Google Scholar

Seiwert TY, Haraf DJ, Cohen EE, Stenson K, Witt ME, Dekker A, et al. Phase I study of bevacizumab added to fluorouracil- and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer. J Clin Oncol 2008; 26: 1732-41.10.1200/JCO.2007.13.170618375903Search in Google Scholar

Lai A, Filka E, McGibbon B, Nghiemphu PL, Graham C, Yong WH, et al. Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 2008; 71: 1372-80.10.1016/j.ijrobp.2007.11.06818355978Search in Google Scholar

Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 2009; 27: 3020-6.10.1200/JCO.2008.21.1771270223419470921Search in Google Scholar

Koukourakis MI, Giatromanolaki A, Sheldon H, Buffa FM, Kouklakis G, Ragoussis I, et al. Tumor and Angiogenesis Research Group. Phase I/II trial of bevacizumab and radiotherapy for locally advanced inoperable colorectal cancer: vasculature-independent radiosensitizing effect of bevacizumab. Clin Cancer Res 2009; 15: 7069-76.10.1158/1078-0432.CCR-09-068819887481Search in Google Scholar

Crane CH, Winter K, Regine WF, Safran H, Rich TA, Curran W, et al. Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer: Radiation Therapy Oncology Group RTOG 0411. J Clin Oncol 2009; 27: 4096-102.10.1200/JCO.2009.21.8529273442119636002Search in Google Scholar

Spigel DR, Hainsworth JD, Yardley DA, Raefsky E, Patton J, Peacock N, et al. Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol 2010; 28: 43-8.10.1200/JCO.2009.24.735319901100Search in Google Scholar

Kao J, Packer S, Vu HL, Schwartz ME, Sung MW, Stock RG, et al. Phase 1 study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitinib for patients with oligometastases: acute toxicity and preliminary response. Cancer 2009; 115: 3571-80.10.1002/cncr.24412437026619536893Search in Google Scholar

Ng QS, Goh V, Carnell D, Meer K, Padhani AR, Saunders MI, et al. Tumor antivascular effects of radiotherapy combined with combretastatin a4 phosphate in human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 67: 1375-80.10.1016/j.ijrobp.2006.11.02817275203Search in Google Scholar

Gridelli C, Rossi A, Maione P, Rossi E, Castaldo V, Sacco PC, et al. Vascular disrupting agents: a novel mechanism of action in the battle against nonsmall cell lung cancer. Oncologist 2009; 14: 612-20.10.1634/theoncologist.2008-028719474164Search in Google Scholar

Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 2009; 6: 395-404.10.1038/nrclinonc.2009.5219424102Search in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology