This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
AMADORI, A.—PINTORE, F.—SALA, M.: On the discrete logarithm problem for prime-field elliptic curves, Finite Fields and Their Applications 51 (2018), 168–182.Search in Google Scholar
BERNSTEIN, D. J.—BIRKNER, P.—JOYE, M.—LANGE, T.—PETERS, C.: Twisted Edwards Curves.In: Progress in Cryptology — AFRICACRYPT 2008 (S. Vaudenay, ed.), Springer-Verlag, Berlin 2008, pp. 389–405.Search in Google Scholar
BERNSTEIN, D. J.—LANGE, T.: Faster Addition and Doubling on Elliptic Curves. In: Advances in Cryptology — ASIACRYPT 2007 (K. Kurosawa, ed.), Springer-Verlag, Berlin, 2007.Search in Google Scholar
BETTALE, L.—FAUGERE, J.-C.—PERRET, L.: Hybrid approach for solving multivariate systems over finite fields,J. Math. Cryptol. 3 (2009), 177–197.Search in Google Scholar
BUREK, E.—WROŃSKI, M.—MAŃK, K.—MISZTAL, M.: Algebraic attacks on block ciphers using quantum annealing, IEEE Transactions on Emerging Topics in Computing 10 (2022), 678–689.Search in Google Scholar
CHEN, Y.-A.—GAO, X.-S.: Quantum algorithm for Boolean equation solving and quantum algebraic attack on cryptosystems, J. Syst. Sci. Complex. 35 (2022), 373–412.Search in Google Scholar
CHEN, Y.-A.—GAO, X.-S.—YUAN, C.-M.: Quantum algorithm for optimization and polynomial system solving over finite field and application to cryptanalysis,arXivpreprint arXiv:1802.03856, 2018.Search in Google Scholar
DIEM, C.: The GHS attack in odd characteristic, J. Ramanujan Math. Soc. 18 (2003), 1–32.Search in Google Scholar
DIEM, C.: On the discrete logarithm problem in elliptic curves, Compos. Math.147 (2011), 75–104.Search in Google Scholar
DRIDI, R.—ALGHASSI, H.: Prime factorization using quantum annealing and computational algebraic geometry, Scientific Reports 7, Article no. 43048 (2017), 1–10; https://doi.org/10.1038/srep43048Search in Google Scholar
DRY LO, R.—KIJKO, T.—WROŃSKI, M.: Determining formulas related to point compression on alternative models of elliptic curves, Fundamenta Informaticae 169 (2019), 285–294.Search in Google Scholar
EDWARDS, H. M.: A normal form for elliptic curves, Bull. Amer. Math. Soc. 44 (2007), 393–422.Search in Google Scholar
FAUGÈRE, J.-C.—GAUDRY, P.—HUOT, L.—RENAULT, G.: Using symmetries in the index calculus for elliptic curves discrete logarithm, J. Cryptology 27 (2014), 595–635.Search in Google Scholar
GAUDRY, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem, Journal of Symbolic Computation 44 (2009), 1690–1702.Search in Google Scholar
JIANG, S.—BRITT, K. A.—MCCASKEY, A. J.—HUMBLE, T. S.—KAIS, S.: Quantum annealing for prime factorization, Scientific Reports 8 (2018), 1–9; https://doi.org/10.1038/s41598-018-36058-zSearch in Google Scholar
KUDO, M.—YOKOTA, Y.—TAKAHASHI, Y.—YASUDA, M.: Acceleration of index calculus for solving ECDLP over prime fields and its limitation.In: Cryptology and Network Security (J. Camenisch, P. Papadimitratos, eds.), Springer International Publishing. Cham, 2018. pp. 377–393.Search in Google Scholar
LENSTRA JR, H. W.: Factoring integers with elliptic curves, Ann. Math. (1987), 649–673.Search in Google Scholar
MONTGOMERY, P. L.: Speeding the Pollard and elliptic curve methods of factorization, Math. Comput. 48 (1987), 243–264.Search in Google Scholar
PETIT, C.—KOSTERS, M.—MESSENG, A.: Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields,In: Public-Key Cryptography — PKC 2016 (C.-M. Cheng, K.-M. Chung, G. Persiano, B.-Y. Yang, eds.), Springer-Verlag, Berlin, 2016, pp. 3–18.Search in Google Scholar
SEMAEV, I.: Summation polynomials and the discrete logarithm problem on elliptic curves, Cryptology ePrint Archive, Paper 2004/031, (2004); https://ia.cr/2004/031Search in Google Scholar
WANG, B.—HU, F.—YAO, H.—WANG, C.: Prime factorization algorithm based on parameter optimization of Ising model, Scientific Reports 10 (2020), 1–10; https://doi.org/10.1038/s41598-020-62802-5Search in Google Scholar
WROŃSKI, M.: Index calculus method for solving elliptic curve discrete logarithm problem using quantum annealing.In: International Conference on Computational Science, Springer-Verlag, 2021. pp. 149–155.Search in Google Scholar
WROŃSKI, M.: Index calculus method for solving elliptic curve discrete logarithm problem using quantum annealing - example 2021; https://github.com/Michal-Wronski/ECDLP-index-calculus-using-QUBOSearch in Google Scholar
WROŃSKI, M.: Practical solving of discrete logarithm problem over prime fields using quantum annealing. In: International Conference on Computational Science, Springer-Verlag, 2022, pp. 93–106.Search in Google Scholar