Acceso abierto

Solving Elliptic Curve Discrete Logarithm Problem on Twisted Edwards Curves Using Quantum Annealing and Index Calculus Method

 y   
29 oct 2024

Cite
Descargar portada

AMADORI, A.—PINTORE, F.—SALA, M.: On the discrete logarithm problem for prime-field elliptic curves, Finite Fields and Their Applications 51 (2018), 168–182. Search in Google Scholar

BERNSTEIN, D. J.—BIRKNER, P.—JOYE, M.—LANGE, T.—PETERS, C.: Twisted Edwards Curves.In: Progress in Cryptology — AFRICACRYPT 2008 (S. Vaudenay, ed.), Springer-Verlag, Berlin 2008, pp. 389–405. Search in Google Scholar

BERNSTEIN, D. J.—LANGE, T.: Faster Addition and Doubling on Elliptic Curves. In: Advances in Cryptology — ASIACRYPT 2007 (K. Kurosawa, ed.), Springer-Verlag, Berlin, 2007. Search in Google Scholar

BETTALE, L.—FAUGERE, J.-C.—PERRET, L.: Hybrid approach for solving multivariate systems over finite fields,J. Math. Cryptol. 3 (2009), 177–197. Search in Google Scholar

BUREK, E.—WROŃSKI, M.—MAŃK, K.—MISZTAL, M.: Algebraic attacks on block ciphers using quantum annealing, IEEE Transactions on Emerging Topics in Computing 10 (2022), 678–689. Search in Google Scholar

CHEN, Y.-A.—GAO, X.-S.: Quantum algorithm for Boolean equation solving and quantum algebraic attack on cryptosystems, J. Syst. Sci. Complex. 35 (2022), 373–412. Search in Google Scholar

CHEN, Y.-A.—GAO, X.-S.—YUAN, C.-M.: Quantum algorithm for optimization and polynomial system solving over finite field and application to cryptanalysis,arXivpreprint arXiv:1802.03856, 2018. Search in Google Scholar

DIEM, C.: The GHS attack in odd characteristic, J. Ramanujan Math. Soc. 18 (2003), 1–32. Search in Google Scholar

DIEM, C.: On the discrete logarithm problem in elliptic curves, Compos. Math.147 (2011), 75–104. Search in Google Scholar

DRIDI, R.—ALGHASSI, H.: Prime factorization using quantum annealing and computational algebraic geometry, Scientific Reports 7, Article no. 43048 (2017), 1–10; https://doi.org/10.1038/srep43048 Search in Google Scholar

DRY LO, R.—KIJKO, T.—WROŃSKI, M.: Determining formulas related to point compression on alternative models of elliptic curves, Fundamenta Informaticae 169 (2019), 285–294. Search in Google Scholar

EDWARDS, H. M.: A normal form for elliptic curves, Bull. Amer. Math. Soc. 44 (2007), 393–422. Search in Google Scholar

FAUGÈRE, J.-C.—GAUDRY, P.—HUOT, L.—RENAULT, G.: Using symmetries in the index calculus for elliptic curves discrete logarithm, J. Cryptology 27 (2014), 595–635. Search in Google Scholar

GAUDRY, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem, Journal of Symbolic Computation 44 (2009), 1690–1702. Search in Google Scholar

JIANG, S.—BRITT, K. A.—MCCASKEY, A. J.—HUMBLE, T. S.—KAIS, S.: Quantum annealing for prime factorization, Scientific Reports 8 (2018), 1–9; https://doi.org/10.1038/s41598-018-36058-z Search in Google Scholar

KUDO, M.—YOKOTA, Y.—TAKAHASHI, Y.—YASUDA, M.: Acceleration of index calculus for solving ECDLP over prime fields and its limitation.In: Cryptology and Network Security (J. Camenisch, P. Papadimitratos, eds.), Springer International Publishing. Cham, 2018. pp. 377–393. Search in Google Scholar

LENSTRA JR, H. W.: Factoring integers with elliptic curves, Ann. Math. (1987), 649–673. Search in Google Scholar

MONTGOMERY, P. L.: Speeding the Pollard and elliptic curve methods of factorization, Math. Comput. 48 (1987), 243–264. Search in Google Scholar

PETIT, C.—KOSTERS, M.—MESSENG, A.: Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields,In: Public-Key Cryptography — PKC 2016 (C.-M. Cheng, K.-M. Chung, G. Persiano, B.-Y. Yang, eds.), Springer-Verlag, Berlin, 2016, pp. 3–18. Search in Google Scholar

SEMAEV, I.: Summation polynomials and the discrete logarithm problem on elliptic curves, Cryptology ePrint Archive, Paper 2004/031, (2004); https://ia.cr/2004/031 Search in Google Scholar

WANG, B.—HU, F.—YAO, H.—WANG, C.: Prime factorization algorithm based on parameter optimization of Ising model, Scientific Reports 10 (2020), 1–10; https://doi.org/10.1038/s41598-020-62802-5 Search in Google Scholar

WROŃSKI, M.: Index calculus method for solving elliptic curve discrete logarithm problem using quantum annealing.In: International Conference on Computational Science, Springer-Verlag, 2021. pp. 149–155. Search in Google Scholar

WROŃSKI, M.: Index calculus method for solving elliptic curve discrete logarithm problem using quantum annealing - example 2021; https://github.com/Michal-Wronski/ECDLP-index-calculus-using-QUBO Search in Google Scholar

WROŃSKI, M.: Practical solving of discrete logarithm problem over prime fields using quantum annealing. In: International Conference on Computational Science, Springer-Verlag, 2022, pp. 93–106. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales