1. bookTom 75 (2020): Zeszyt 1 (April 2020)
    Applied Mathematics'19
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
Otwarty dostęp

Efficient 3D Shape Registration by Using Distance Maps and Stochastic Gradient Descent Method

Data publikacji: 24 Apr 2020
Tom & Zeszyt: Tom 75 (2020) - Zeszyt 1 (April 2020) - Applied Mathematics'19
Zakres stron: 81 - 102
Otrzymano: 26 Jun 2019
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski

[1] COOK, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Applications of GPU Computing Series. Elsevier Science, London, 2012.Search in Google Scholar

[2] COOTES, T.—TAYLOR, C.—COOPER, D.—GRAHAM, J.: Active Shape Models-Their Training and Application, Computer Vision and Image Understanding 61 (1995), 38–59.10.1006/cviu.1995.1004Search in Google Scholar

[3] FOMEL, S.: Traveltime Computation with the Linearized Eikonal Equation, Report, Sep-94, 1997, 123–131.Search in Google Scholar

[4] HYSING, S.—TUREK, S.: The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids.In: Proceedings of the Algorythmy 2005, pp. 22–31.Search in Google Scholar

[5] INTEL® :. Intel® CoreTM i7-5820K Processor (15M Cache, up to 3.60 GHz) Product Specifications. https://ark.intel.com/content/www/us/en/ark/products/82932/intel-core-i7-5820k-processor-15m-cache-up-to-3-60-ghz.html.Search in Google Scholar

[6] KASS, M.—WITKIN, A.—TERZOPOULOS, D.: Snakes: Active contour models,Int. J. Comput. Vision 1 (1988), 321–331.10.1007/BF00133570Search in Google Scholar

[7] KLEMM, M.—DE SUPINSKI, B.—BOARD, T.: OpenMP Application Programming Interface Specification Version 5.0. Independently Published, 2018.Search in Google Scholar

[8] LI, M.—ZHANG, T.—CHEN, Y.—SMOLA, A. J.: Efficient mini-batch training for stochastic optimization.In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, ACCM, New York, NY, 2014. pp. 661–670.Search in Google Scholar

[9] MARKOVSKY, I.—MAHMOODI, S.: Least-squares contour alignment, IEEE Signal Processing Letters 16 (2009), 41–44.10.1109/LSP.2008.2008588Search in Google Scholar

[10] MARQUES, J. S.—ABRANTES, A. J.: Shape alignment — optimal initial point and pose estimation, Pattern Recognition Letters 18 (1997), 49–53.10.1016/S0167-8655(96)00120-1Search in Google Scholar

[11] METEL, M. R.: Mini-batch stochastic gradient descent with dynamic sample sizes,arXiv e-prints (2017), arXiv:1708.00555.Search in Google Scholar

[12] MIKULA, K.—URBÁN, J.: Fully automatic affine registration of planar parametric curves,In: Proceedings of the Conference Algoritmy 2016, pp. 343–352.Search in Google Scholar

[13] OKOCK, P. O.—JOZEF, U.—UBA, M. O.: ImageInLib v1.0.0 Release, February 15, 2019.Search in Google Scholar

[14] PARAGIOS, N.—ROUSSON, M.—RAMESH, V.: Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration. ECCV, Copenhangen, Denmark, 2002.10.1007/3-540-47967-8_52Search in Google Scholar

[15] PARAGIOS, N.—ROUSSON, M.—RAMESH, V.: Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration. In: Computer Vision–ECCV 2002 (A. Heyden, G. Sparr, M. Nielsen, P. Johansen, eds.), Springer-Verlag, Berlin, 2002, pp. 775–789,Search in Google Scholar

[16] OKOCK, P.: Efficient 3D shape registration using distance maps and stochastic gradient descent method. http://bit.ly/2LXmVLK.Search in Google Scholar

[17] ROBBINS, H.—MONRO, S.: A stochastic approximation method, Ann. Math. Stat. 22 (1951), 400–407.10.1214/aoms/1177729586Search in Google Scholar

[18] ROBBINS, H.—SIEGMUND, D.: A Convergence Theorem For Non Negative Almost Supermartingales And Some Applications**Research supported by NIH Grant 5–R01–GM-16895–03 and ONR Grant N 00014-67-A-0108-0018..In: Optimizing Methods in Statistics (J. S. Rustagi, ed.), Academic Press, 1971. pp. 233–257.Search in Google Scholar

[19] ROBBINS, H.—MONRO, S.: A Stochastic Approximation Method, Ann. Math. Statist. 22 (1951), 400–407.10.1214/aoms/1177729586Search in Google Scholar

[20] RUSTAGI, J.: Optimizing Methods in Statistics: Proceedings. Academic Press,1971.Search in Google Scholar

[21] SETHIAN, J. A.: Level Set Methods and Fast Marching Methods.In:Cambridge Monographs on Appl. Comput. Math. Vol. 3, Cambridge: Cambridge University Press. xx, 1999.Search in Google Scholar

[22] URBÁN, J.: The New Improvements of Atlas Based Image Segmentations.PhD Thesis, Slovak University of Technology in Bratislava, jozef.urban@gmail.com, 7, 2016.Search in Google Scholar

[23] WIKIPEDIA CONTRIBUTORS: Brute-force search —Wikipedia, The Free Encyclopedia. 2019. [Online; accessed 9-June-2019] https://en.wikipedia.org/w/index.php?title=Brute-force_search&oldid=890487309Search in Google Scholar

[24] ZAHN, C. T.—ROSKIES, R. Z.: Fourier descriptors for plane closed curves, IEEE Trans. Comput. C-21 (1972), 269–281.10.1109/TC.1972.5008949Search in Google Scholar

[25] ZHAO, H.: A fast sweeping method for eikonal equations, Math. Comput. 74 (2005), no. 250, 603–627.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo