1. bookTom 75 (2020): Zeszyt 1 (April 2020)
    Applied Mathematics'19
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
Otwarty dostęp

The Finite Element Method as a Tool to Solve the Oblique Derivative Boundary Value Problem in Geodesy

Data publikacji: 24 Apr 2020
Tom & Zeszyt: Tom 75 (2020) - Zeszyt 1 (April 2020) - Applied Mathematics'19
Zakres stron: 63 - 80
Otrzymano: 30 Apr 2019
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-9750
Pierwsze wydanie
12 Nov 2012
Częstotliwość wydawania
3 razy w roku
Języki
Angielski

[1] BARRETT, J. W.—ELLIOTT, CH. M.: Fixed mesh finite element approximations to a free boundary problem for an elliptic equation with an oblique derivative boundary condition, Compt. Math. Appl. 11 (1985), no. 4, 335–345.Search in Google Scholar

[2] BAUER, F.: An Alternative Approach to the Oblique Derivative Problem in Potential Theory. In: PhD Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker Verlag, Aachen, Germany, 2004.Search in Google Scholar

[3] BECKER, J. J.—SANDWELL, D. T.—SMITH, W. H. F.—BRAUD, J.—BINDER, B.— DEPNER, J.—FABRE, D.—FACTOR, J.—INGALLS, S.—KIM S. H.—LADNER, R.— MARKS, K.—NELSON, S.—PHARAOH, A.—TRIMMER, R.—ROSENBERG, J. VON, WALLACE, G.—WEATHERALL, P.: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30 PLUS, Marine Geodesy 32 (2009), no. 4, 355–371.Search in Google Scholar

[4] BITZADSE, A. V.: Boundary-Value Problems for Second-Order Elliptic Equations.North-Holland, Amsterdam, 1968.Search in Google Scholar

[5] BJERHAMMAR, A.—SVENSSON, L.: On the geodetic boundary value problem for a fixed boundary surface, A satellite approach, Bull Geod. 57 (1983), no. 1–4, 382–393.Search in Google Scholar

[6] BRENNER, S. C.—SCOTT, L. R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 2002.10.1007/978-1-4757-3658-8Search in Google Scholar

[7]ČUNDERLÍ K, R.—MIKULA, K.—MOJZEŠ, M.: Numerical solution of the linearized fixed gravimetric boundary-value problem,J. Geod. 82 (2008), 15–29.10.1007/s00190-007-0154-0Search in Google Scholar

[8]ČUNDERLÍ K, R.—MIKULA, K.: Direct BEM for high-resolution gravity field modelling, Stud. Geophys. Geod. 54 (2010), no. 2, 219–238Search in Google Scholar

[9]ČUNDERLÍK,R.—MIKULA, K.—ŠPIR R.: An oblique derivative in the direct BEM formulation of the fixed gravimetric BVP,IAG Symp. 137 (2012), 227–231.Search in Google Scholar

[10] FAŠKOVÁ, Z.: Numerical Methods for Solving Geodetic Boundary Value Problems.PhD Thesis, SvF STU, Bratislava, Slovakia, 2008.Search in Google Scholar

[11] FAŠKOVÁ, Z.—ČUNDERLÍK, R.—MIKULA, K.: Finite element method for solving geodetic boundary value problems,J.Geod. 84 (2010), no. 2, 135–144Search in Google Scholar

[12] FREEDEN, W.: Harmonic splines for solving boundary value problems of potential theory. In: J. C. Mason, M. G. Cox, eds.) Algorithms for Approximation, (Shrivenham, 1985), Inst. Math. Appl. Conf. Ser. New Ser. Vol. 10, Oxford Univ. Press, New York, pp. 507–529.Search in Google Scholar

[13] FREEDEN, W.—GERHARDS, C.: Geomathematically Oriented Potential Theory,CRC Press (2013)10.1201/b13057Search in Google Scholar

[14] FREEDEN, W.—KERSTEN, H.: A constructive approximation theorem for the oblique derivative problem in potential theory, Mathematical Methods in Appl. Sci. 3 (1981), 104–114.10.1002/mma.1670030108Search in Google Scholar

[15] FREEDEN, W.—MICHEL, V.: Multiscale Potential Theory. With Applications to Geo-science.In: Applied and Numerical Harmonic Analysis.Birkhäuser Boston, Inc., Boston, MA, 2004.Search in Google Scholar

[16] FREEDEN W.—NUTZ H.: On the Solution of the Oblique Derivative Problem by Constructive Runge-Walsh Concepts,In: Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science. (I. Pesenson,Q.Le Gia, A. Mayeli, H. Mhaskar, Dx. Zhou, eds.) Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. 2017.10.1007/978-3-319-55556-0_11Search in Google Scholar

[17] GALLISTL, D.: Numerical approximation of planar oblique derivative problems in non-divergence form,Math. Comp. 88 (2019), 1091–111910.1090/mcom/3371Search in Google Scholar

[18] GUTTING, M.: Fast Multipole Methods for Oblique Derivative Problems. In: PhD Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern. Shaker Verlag, Aachen, Germany 2007.Search in Google Scholar

[19] GUTTING, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem, International Journal on Geomathematics 3 (2012), 223–252.10.1007/s13137-012-0038-1Search in Google Scholar

[20] HOLOTA, P.: Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation,J. Geod. 71 (1997), 640–651.10.1007/s001900050131Search in Google Scholar

[21] KAWECKI, E.: A Discontinuous Galerkin Finite Element Method for Uniformly Elliptic Two Dimensional Oblique Boundary-Value Problems, SIAM J.Numer.Anal. 57 (2019), no. 2, 751–778.Search in Google Scholar

[22] KLEES, R.: Boundary value problems and approximation of integral equations by finite elements, Manuscripta Geodaetica 20 (1995), 345–361.Search in Google Scholar

[23] KLEES, R.—VAN GELDEREN, M.—LAGE, C.—SCHWAB, C.: Fast numerical solution of the linearized Molodensky problem,J. Geod. 75 (2001), 349–362.10.1007/s001900100183Search in Google Scholar

[24] KOCH, K. R.—POPE, A. J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth, Bull. Geod. 46 (1972), 467–476.10.1007/BF02522053Search in Google Scholar

[25] LEHMANN, R.—KLEES, R.: Numerical solution of geodetic boundary value problems using a global reference field,J. Geod. 73, (1999), 543–554.10.1007/s001900050265Search in Google Scholar

[26] LEVEQUE, R. J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511791253Search in Google Scholar

[27] LIEBERMAN, G. M.: Oblique Derivative Problems for Elliptic Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2003.Search in Google Scholar

[28] MACÁK, M.—ČUNDERLÍK, R.—MIKULA, K.—MINARECHOVÁ, Z.: An upwind-based scheme for solving the oblique derivative boundary-value problem related to the physical geodesy, J. Geod. Sci. 5, (2015) no. 1, 180–188.Search in Google Scholar

[29] MACÁK, M.—MIKULA, K.—MINARECHOVÁ, Z.: Solving the oblique derivative boundary-value problem by the finite volume method. In: 19th Conference on Scientific Computing, Podbanske, Slovakia, September 9-14, 2012, ALGORITMY 2012 (Proceedings of contributed papers and posters), Publishing House of STU, 2012, pp. 75–84.Search in Google Scholar

[30] MACÁK, M.—MINARECHOVÁ, Z.—MIKULA, K.: A novel scheme for solving the oblique derivative boundary-value problem, Stud. Geophy. Geo. 58 (2014), no. 4, 556–570.Search in Google Scholar

[31] MATLAB version 2018 b. The MathWorks Inc., Natick, Massachusetts: 2018.Search in Google Scholar

[32] MAYER-GURR, T., ET AL,: The new combined satellite only model GOCO03s. In: Presented at the GGHS-2012 in Venice, Italy 2012.Search in Google Scholar

[33] MEDL’A, M.—MIKULA, K.—ČUNDERLÍK, R.—MACÁK, M.: Numerical solution to the oblique derivative boundary value problem on non-uniform grids above the Earth topography, J. Geod. DOI 10.1007/s00190-017-1040-z(2017).Search in Google Scholar

[34] MEISSL, P.: The use of finite elements in physical geodesy. Report 313. In: Geodetic Science and Surveying, The Ohio State University 1981. https://apps.dtic.mil/dtic/tr/fulltext/u2/a104164.pdfSearch in Google Scholar

[35] MINARECHOVÁ, Z.—MACÁK, M.—ČUNDERLÍK, R.—MIKULA, K.: High-resolution global gravity field modelling by the finite volume method, Stud. Geophys Geo. 59 (2015), 1–20.10.1007/s11200-013-0634-zSearch in Google Scholar

[36] MIRANDA, C.: Partial Differential Equations of Elliptic Type. Springer-Verlag, Berlin, 1970.10.1007/978-3-662-35147-5Search in Google Scholar

[37] MRÁZ, D.—BOŘÍK, M.—NOVOTNÝ, J.: On the convergence of the h-p finite element method for solving boundary value problems in physical geodesy. In: International Symposium on Earth and Environmental Sciences for Future Generations (J. T. Freymueller, L. Sánchez, eds.), International Association of Geodesy Symposia Vol. 147, Springer, Cham, Switzerland. 2016, pp. 39–45.10.1007/1345_2016_237Search in Google Scholar

[38] PAVLIS, N.K.—HOLMES, S.A.—KENYON, S.C.—FACTOR, J.K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research 117 (2012), B04406. DOI:10.1029/2011JB00891610.1029/2011JB008916Search in Google Scholar

[39] SHAOFENG, B.—DINGBO, C.: The finite element method for the geodetic boundary value problem, Manuscr. Geod. 16 (1991), 353–359.Search in Google Scholar

[40]ŠPRLÁK, M.—FAŠKOVÁ, Z.—MIKULA, K.: On the application of the coupled finiteinfinite element method to the geodetic boundary value problem, Stud. Geophys. Geo. 55 (2011), 479–487.10.1007/s11200-011-0028-zSearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo