Otwarty dostęp

Identification of mass, damping and stiffness matrices of multi degree of freedom system subjected to kinematic excitations

  
25 mar 2025

Zacytuj
Pobierz okładkę

Figure 1:

Shear building computational model.
Shear building computational model.

Figure 2:

Diagrams of applied kinematic excitations: a) harmonics, b) sum of three harmonic functions and c) real earthquake.
Diagrams of applied kinematic excitations: a) harmonics, b) sum of three harmonic functions and c) real earthquake.

Figure 3:

Spectral power density determined from displacements registered during 2006 Kiholo Bay earthquake.
Spectral power density determined from displacements registered during 2006 Kiholo Bay earthquake.

Dynamic response of computational model at time instant t = 7_71s_

Iteration step Displacements [mm] Velocities [mm/s] Accelerations [mm/s2]

q1 q2 q3 q˙1 {\dot q_1} q˙2 {\dot q_2} q˙3 {\dot q_3} q¨1 {\ddot q_1} q¨2 {\ddot q_2} q¨3 {\ddot q_3} z¨ \ddot z
1 5.039 7.062 9.491 17.36 23.66 13.55 −1274 −605.3 −933.9 648.8
2 4.324 6.151 8.897 25.15 22.09 14.97 −1172 −498.1 −965.6 648.8
3 3.508 5.281 8.293 31.56 19.94 16.40 −1025 −432.6 −991.9 648.8
4 2.614 4.444 7.685 35.78 17.88 17.78 −843.2 −398.6 −1014 648.8
5 1.681 3.623 7.079 37.28 16.25 19.11 −645.9 −379.1 −1034 648.8
6 0.754 2.798 6.479 36.02 14.96 20.44 −454.0 −356.7 −1056 648.8
7 −0.122 1.960 5.888 32.30 13.60 21.88 −285.5 −318.9 −1079 648.8

Computational model data in particular iteration steps_

Iteration step 1 ref. 2 3 4 5 6 7
m1 [kg] 10.724
m2 [kg] 10.134
m3 [kg] 20.32
Δm1 [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6
Δm2 [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6
Δm3 [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6
k1 [N/m] 2100
k2 [N/m] 2100
k3 [N/m] 2100
μ [1/s] 0.077466
κ [s] 0.00094753

Dynamic response of computational model at time instant t = 9_3s_

Iteration step Displacements [mm] Velocities [mm/s] Accelerations [mm/s2]

q1 q2 q3 q˙1 {\dot q_1} q˙2 {\dot q_2} q˙3 {\dot q_3} q¨1 {\ddot q_1} q¨2 {\ddot q_2} q¨3 {\ddot q_3} z¨ \ddot z
1 −3.578 −7.647 −11.07 −21.71 −53.28 −83.45 144.3 378.9 603.6 −240.5
2 −3.044 −6.558 −9.494 −21.76 −53.65 −84.01 149.0 363.4 552.0 −240.5
3 −2.502 −5.469 −7.946 −22.22 −53.78 −83.11 151.1 344.6 503.3 −240.5
4 −1.936 −4.385 −6.465 −22.85 −53.46 −80.94 143.3 319.3 461.3 −240.5
5 −1.344 −3.319 −5.085 −23.17 −52.44 −77.80 122.1 287.1 427.9 −240.5
6 −0.742 −2.297 −3.826 −22.70 −50.48 −74.00 89.30 250.2 402.7 −240.5
7 −0.162 −1.346 −2.697 −21.10 −47.46 −69.80 51.76 212.2 383.6 −240.5

Dynamic response of computational model at time instant t = 5s_

Iteration step Displacements [mm] Velocities [mm/s] Accelerations [mm/s2]

q1 q2 q3 q˙1 {\dot q_1} q˙2 {\dot q_2} q˙3 {\dot q_3} q¨1 {\ddot q_1} q¨2 {\ddot q_2} q¨3 {\ddot q_3} z¨ \ddot z
1 1.051 1.933 2.552 −4.227 −9.333 −13.72 −33.09 −53.37 −62.55 0
2 0.855 1.568 2.067 −3.574 −8.309 −12.53 −27.55 −43.05 −49.98 0
3 0.655 1.199 1.581 −3.028 −7.475 −11.56 −21.21 −32.47 −37.77 0
4 0.452 0.830 1.097 −2.602 −6.827 −10.80 −14.24 −21.83 −25.92 0
5 0.249 0.462 0.615 −2.305 −6.361 −10.23 −6.878 −11.30 −14.41 0
6 0.047 0.097 0.141 −2.140 −6.069 −9.842 0.541 −0.984 −3.222 0
7 −0.151 −0.261 −0.326 −2.102 −5.945 −9.627 7.686 9.010 7.682 0

Number of needed iterations – changes in momentum of system being identified_

Number of dynamic degrees of freedom d Number of relations given by relation (15) Number of unknowns nu Number of iterations nr
2 2 10 5
3 3 19 7
4 4 31 8
5 5 46 10
6 6 64 11
7 7 85 13
8 8 109 14