Otwarty dostęp

Predictive Modelling of Pavement Quality Fibre-Reinforced Alkali-Activated Nano-Concrete Mixes through Artificial Intelligence

, ,  oraz   
24 mar 2025

Zacytuj
Pobierz okładkę

S. Suanmali and V. Ammarapala, “Maintenance Budget Planning: A Case Study for Rigid Pavement Maintenance System in Thailand,” 2010, doi: 10.1109/icsssm.2010.5530086. SuanmaliS. AmmarapalaV. “Maintenance Budget Planning: A Case Study for Rigid Pavement Maintenance System in Thailand,” 2010 10.1109/icsssm.2010.5530086 Open DOISearch in Google Scholar

E. Ghani, A. G. Goswami, and W. R. Kerr, “Highway to Success: The Impact of the Golden Quadrilateral Project for the Location and Performance of Indian Manufacturing,” The Economic Journal, 2015, doi: 10.1111/ecoj.12207. GhaniE. GoswamiA. G. KerrW. R. “Highway to Success: The Impact of the Golden Quadrilateral Project for the Location and Performance of Indian Manufacturing,” The Economic Journal 2015 10.1111/ecoj.12207 Open DOISearch in Google Scholar

A. Das, E. Ghani, A. G. Goswami, W. Kerr, and R. Nanda, “Infrastructure and Finance: Evidence from India’s GQ Highway Network,” SSRN Electronic Journal, 2019, doi: 10.2139/ssrn.3399447. DasA. GhaniE. GoswamiA. G. KerrW. NandaR. “Infrastructure and Finance: Evidence from India’s GQ Highway Network,” SSRN Electronic Journal 2019 10.2139/ssrn.3399447 Open DOISearch in Google Scholar

R. Kumar and S. Sharma, “Perpetual Flexible Pavement vs. Rigid Pavement: An Economic and Environmental Cost Comparison,” IOP Conf Ser Earth Environ Sci, 2022, doi: 10.1088/1755-1315/1084/1/012053. KumarR. SharmaS. “Perpetual Flexible Pavement vs. Rigid Pavement: An Economic and Environmental Cost Comparison,” IOP Conf Ser Earth Environ Sci 2022 10.1088/1755-1315/1084/1/012053 Open DOISearch in Google Scholar

K. Sharma and M. K. Trivedi, “Statistical Analysis of Delay-Causing Factors in Indian Highway Construction Projects Under Hybrid Annuity Model,” Transportation Research Record Journal of the Transportation Research Board, 2023, doi: 10.1177/03611981231161594. SharmaK. TrivediM. K. “Statistical Analysis of Delay-Causing Factors in Indian Highway Construction Projects Under Hybrid Annuity Model,” Transportation Research Record Journal of the Transportation Research Board 2023 10.1177/03611981231161594 Open DOISearch in Google Scholar

“Year End Review-2022 : Ministry of Road Transport and Highways.” “Year End Review-2022 : Ministry of Road Transport and Highways.” Search in Google Scholar

P. Solanki and S. Sharma, “Performance Rating of National Highways Based on Road User Perspective – A Case Study of Kalka–Shimla Highway,” IOP Conf Ser Earth Environ Sci, 2022, doi: 10.1088/1755-1315/1084/1/012055. SolankiP. SharmaS. “Performance Rating of National Highways Based on Road User Perspective – A Case Study of Kalka–Shimla Highway,” IOP Conf Ser Earth Environ Sci 2022 10.1088/1755-1315/1084/1/012055 Open DOISearch in Google Scholar

C. Aditya, D. Irawan, and S. Silviana, “Implementation of Marble Waste as Aggregate Material Rigid Pavement,” Eureka Physics and Engineering, 2021, doi: 10.21303/2461-4262.2021.001932. AdityaC. IrawanD. SilvianaS. “Implementation of Marble Waste as Aggregate Material Rigid Pavement,” Eureka Physics and Engineering 2021 10.21303/2461-4262.2021.001932 Open DOISearch in Google Scholar

T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Hanjitsuwan, and S. Hatanaka, “The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured,” 2014, doi: 10.1016/J.MATDES.2013.09.049. Phoo-ngernkhamT. ChindaprasirtP. SataV. HanjitsuwanS. HatanakaS. “The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured,” 2014 10.1016/J.MATDES.2013.09.049 Open DOISearch in Google Scholar

H. Assaedi, F. U. A. Shaikh, and I. M. Low, “Effect of nano-clay on mechanical and thermal properties of geopolymer,” Journal of Asian Ceramic Societies, 2016, doi: 10.1016/J.JASCER.2015.10.004. AssaediH. ShaikhF. U. A. LowI. M. “Effect of nano-clay on mechanical and thermal properties of geopolymer,” Journal of Asian Ceramic Societies 2016 10.1016/J.JASCER.2015.10.004 Open DOISearch in Google Scholar

M. A. Uddin, M. T. Bashir, A. M. Khan, F. Alsharari, F. Farid, and R. Alrowais, “Effect of Silica Fume on Compressive Strength and Water Absorption of the Portland Cement–Silica Fume Blended Mortar,” Arab J Sci Eng, vol. 49, no. 4, pp. 4803–4811, Apr. 2024, doi: 10.1007/s13369-023-08204-x. UddinM. A. BashirM. T. KhanA. M. AlsharariF. FaridF. AlrowaisR. “Effect of Silica Fume on Compressive Strength and Water Absorption of the Portland Cement–Silica Fume Blended Mortar,” Arab J Sci Eng 49 4 4803 4811 Apr. 2024 10.1007/s13369-023-08204-x Open DOISearch in Google Scholar

F. Matalkah, A. Ababneh, and R. Aqel, “Effects of nanomaterials on mechanical properties, durability characteristics and microstructural features of alkali-activated binders: A comprehensive review,” Constr Build Mater, vol. 336, p. 127545, Jun. 2022, doi: 10.1016/j.conbuildmat.2022.127545. MatalkahF. AbabnehA. AqelR. “Effects of nanomaterials on mechanical properties, durability characteristics and microstructural features of alkali-activated binders: A comprehensive review,” Constr Build Mater 336 127545 Jun. 2022 10.1016/j.conbuildmat.2022.127545 Open DOISearch in Google Scholar

M. Rezaei Shahmirzadi, A. Gholampour, A. Kashani, and T. D. Ngo, “Geopolymer mortars for use in construction 3D printing: Effect of LSS, graphene oxide and nanoclay at different environmental conditions,” Constr Build Mater, vol. 409, p. 133967, Dec. 2023, doi: 10.1016/j.conbuildmat.2023.133967. Rezaei ShahmirzadiM. GholampourA. KashaniA. NgoT. D. “Geopolymer mortars for use in construction 3D printing: Effect of LSS, graphene oxide and nanoclay at different environmental conditions,” Constr Build Mater 409 133967 Dec. 2023 10.1016/j.conbuildmat.2023.133967 Open DOISearch in Google Scholar

M. T. Bashir, S. Muhammad, M. J. Butt, M. Alzara, and M. S. El-kady, “Aspect ratio effect of multi-walled carbon nanotubes and carbon fibers on high-performance cement mortar matrices,” Innovative Infrastructure Solutions, vol. 5, no. 2, Aug. 2020, doi: 10.1007/s41062-020-00290-2. BashirM. T. MuhammadS. ButtM. J. AlzaraM. El-kadyM. S. “Aspect ratio effect of multi-walled carbon nanotubes and carbon fibers on high-performance cement mortar matrices,” Innovative Infrastructure Solutions 5 2 Aug. 2020 10.1007/s41062-020-00290-2 Open DOISearch in Google Scholar

“MoRTH Annual Report for the Year 2022–23.” “MoRTH Annual Report for the Year 2022–23.” Search in Google Scholar

T. T. Nguyen and K. Dinh, “An artificial intelligence approach for concrete hardened property estimation,” Journal of Science and Technology in Civil Engineering (STCE) - NUCE, vol. 14, no. 2, pp. 40–52, Apr. 2020, doi: 10.31814/stce.nuce2020-14(2)-04. NguyenT. T. DinhK. “An artificial intelligence approach for concrete hardened property estimation,” Journal of Science and Technology in Civil Engineering (STCE) - NUCE 14 2 40 52 Apr. 2020 10.31814/stce.nuce2020-14(2)-04 Open DOISearch in Google Scholar

F. Jamali, S. R. Mousavi, A. B. Peyma, and Y. Moodi, “Prediction of compressive strength of fiber-reinforced polymers-confined cylindrical concrete using artificial intelligence methods,” Journal of Reinforced Plastics and Composites, vol. 41, no. 17–18, pp. 679–704, Sep. 2022, doi: 10.1177/07316844211068116. JamaliF. MousaviS. R. PeymaA. B. MoodiY. “Prediction of compressive strength of fiber-reinforced polymers-confined cylindrical concrete using artificial intelligence methods,” Journal of Reinforced Plastics and Composites 41 17–18 679 704 Sep. 2022 10.1177/07316844211068116 Open DOISearch in Google Scholar

T. Li, J. Xiao, and A. Singh, “Strength index analysis of concrete with large size recycled aggregate based on back propagation neural network,” Advances in Structural Engineering, vol. 25, no. 1, pp. 133–145, Jan. 2022, doi: 10.1177/13694332211046348. LiT. XiaoJ. SinghA. “Strength index analysis of concrete with large size recycled aggregate based on back propagation neural network,” Advances in Structural Engineering 25 1 133 145 Jan. 2022 10.1177/13694332211046348 Open DOISearch in Google Scholar

R. Haddad and N. Qarqaz, “Predicting NSMR–concrete bond strength using artificial neural networks: A comparative-analysis study,” Structural Concrete, vol. 24, no. 5, pp. 6421–6435, Oct. 2023, doi: 10.1002/suco.202200630. HaddadR. QarqazN. “Predicting NSMR–concrete bond strength using artificial neural networks: A comparative-analysis study,” Structural Concrete 24 5 6421 6435 Oct. 2023 10.1002/suco.202200630 Open DOISearch in Google Scholar

D. Van Dao, S. H. Trinh, H.-B. Ly, and B. T. Pham, “Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches,” Applied Sciences, vol. 9, no. 6, p. 1113, Mar. 2019, doi: 10.3390/app9061113. Van DaoD. TrinhS. H. LyH.-B. PhamB. T. “Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches,” Applied Sciences 9 6 1113 Mar. 2019 10.3390/app9061113 Open DOISearch in Google Scholar

Y. R. Wang, L. T. Q. Ngo, Y. F. Shih, Y. L. Lu, and Y. M. Chen, “Adapting ANNs in SONREB Test to Estimate Concrete Compressive Strength,” Key Eng Mater, vol. 792, pp. 166–169, Dec. 2018, doi: 10.4028/www.scientific.net/KEM.792.166. WangY. R. NgoL. T. Q. ShihY. F. LuY. L. ChenY. M. “Adapting ANNs in SONREB Test to Estimate Concrete Compressive Strength,” Key Eng Mater 792 166 169 Dec. 2018 10.4028/www.scientific.net/KEM.792.166 Open DOISearch in Google Scholar

Y. Wu and Y. Zhou, “Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques,” Environmental Science and Pollution Research, vol. 29, no. 59, pp. 89198–89209, Dec. 2022, doi: 10.1007/s11356-022-22048-2. WuY. ZhouY. “Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques,” Environmental Science and Pollution Research 29 59 89198 89209 Dec. 2022 10.1007/s11356-022-22048-2 Open DOISearch in Google Scholar

S. Ray, M. M. Rahman, M. Haque, M. W. Hasan, and M. M. Alam, “Performance evaluation of SVR and GBM in predicting compressive and splitting tensile strength of concrete prepared with ceramic waste and nylon fiber,” Journal of King Saud University - Engineering Sciences, vol. 35, no. 2, pp. 92–100, Feb. 2023, doi: 10.1016/j.jksues.2021.02.009. RayS. RahmanM. M. HaqueM. HasanM. W. AlamM. M. “Performance evaluation of SVR and GBM in predicting compressive and splitting tensile strength of concrete prepared with ceramic waste and nylon fiber,” Journal of King Saud University - Engineering Sciences 35 2 92 100 Feb. 2023 10.1016/j.jksues.2021.02.009 Open DOISearch in Google Scholar

H. A. Shah et al., “Application of Machine Learning Techniques for Predicting Compressive, Splitting Tensile, and Flexural Strengths of Concrete with Metakaolin,” Materials, vol. 15, no. 15, p. 5435, Aug. 2022, doi: 10.3390/ma15155435. ShahH. A. “Application of Machine Learning Techniques for Predicting Compressive, Splitting Tensile, and Flexural Strengths of Concrete with Metakaolin,” Materials 15 15 5435 Aug. 2022 10.3390/ma15155435 Open DOISearch in Google Scholar

N. Moradi, M. H. Tavana, M. R. Habibi, M. Amiri, M. J. Moradi, and V. Farhangi, “Predicting the Compressive Strength of Concrete Containing Binary Supplementary Cementitious Material Using Machine Learning Approach,” Materials, vol. 15, no. 15, p. 5336, Aug. 2022, doi: 10.3390/ma15155336. MoradiN. TavanaM. H. HabibiM. R. AmiriM. MoradiM. J. FarhangiV. “Predicting the Compressive Strength of Concrete Containing Binary Supplementary Cementitious Material Using Machine Learning Approach,” Materials 15 15 5336 Aug. 2022 10.3390/ma15155336 Open DOISearch in Google Scholar

J. Huang, M. Zhou, H. Yuan, M. M. S. Sabri, and X. Li, “Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method,” Materials, vol. 15, no. 10, p. 3500, May 2022, doi: 10.3390/ma15103500. HuangJ. ZhouM. YuanH. SabriM. M. S. LiX. “Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method,” Materials 15 10 3500 May 2022 10.3390/ma15103500 Open DOISearch in Google Scholar

A. M. R. Bulbul et al., “In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches,” Materials, vol. 15, no. 21, p. 7764, Nov. 2022, doi: 10.3390/ma15217764. BulbulA. M. R. “In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches,” Materials 15 21 7764 Nov. 2022 10.3390/ma15217764 Open DOISearch in Google Scholar

S. Marathe and A. P. Rodrigues, “Intelligent Models for Prediction of Compressive Strength of Geopolymer Pervious Concrete Hybridized with Agro-Industrial and Construction-Demolition Wastes,” Studia Geotechnica et Mechanica, 2024, doi: 10.2478/sgem-2024-0020. MaratheS. RodriguesA. P. “Intelligent Models for Prediction of Compressive Strength of Geopolymer Pervious Concrete Hybridized with Agro-Industrial and Construction-Demolition Wastes,” Studia Geotechnica et Mechanica 2024 10.2478/sgem-2024-0020 Open DOISearch in Google Scholar

A. Sheshadri, S. Marathe, M. Bettadapura Manjunath, A. Jayasimhan, and Ł. Sadowski, “Effective Utilization of Foundry Waste as Aggregates in Developing Eco-Friendly Alkali-Activated and Conventional Concretes for Sustainable Pavement Infrastructure,” Practice Periodical on Structural Design and Construction, vol. 29, no. 3, Aug. 2024, doi: 10.1061/PPSCFX.SCENG-1501. SheshadriA. MaratheS. Bettadapura ManjunathM. JayasimhanA. SadowskiŁ. “Effective Utilization of Foundry Waste as Aggregates in Developing Eco-Friendly Alkali-Activated and Conventional Concretes for Sustainable Pavement Infrastructure,” Practice Periodical on Structural Design and Construction 29 3 Aug. 2024 10.1061/PPSCFX.SCENG-1501 Open DOISearch in Google Scholar

B. S. E. N. 15167-1:2006, Ground granulated blast furnace slagfor use in concrete, mortar and grout, vol. 3. The European Standard EN, 2006. B. S. E. N. 15167-1:2006 Ground granulated blast furnace slagfor use in concrete, mortar and grout 3 The European Standard EN 2006 Search in Google Scholar

I. 12089-1987, Specification for granulated slag for the manufacture of Portland slag cement. Bureau of Indian Standards, New Delhi, 1987. I. 12089-1987 Specification for granulated slag for the manufacture of Portland slag cement Bureau of Indian Standards New Delhi 1987 Search in Google Scholar

“IRC44”. “IRC44” Search in Google Scholar

N. Delhi. Bureau of Indian Standards, “IS:383 (2016) Coarse and Fine Aggregate for Concrete — Specification. 1–21.,” 1970. N. Delhi. Bureau of Indian Standards “IS:383 (2016) Coarse and Fine Aggregate for Concrete — Specification. 1–21.,” 1970 Search in Google Scholar

IS:14212, “Indian Standard Sodium and Potassium Silicates - Methods of Test,” 1995, Bureau of Indian Standards, New Delhi. IS:14212 “Indian Standard Sodium and Potassium Silicates - Methods of Test,” 1995 Bureau of Indian Standards New Delhi Search in Google Scholar

S. Marathe, I. R. Mithanthaya, B. M. Mithun, S. Shetty, and A. P. K, “Performance of slag-fly ash based alkali activated concrete for paver applications utilizing powdered waste glass as a binding ingredient,” International Journal of Pavement Research and Technology, 2020, doi: 10.1007/s42947-020-0173-2. MaratheS. MithanthayaI. R. MithunB. M. ShettyS. KA. P. “Performance of slag-fly ash based alkali activated concrete for paver applications utilizing powdered waste glass as a binding ingredient,” International Journal of Pavement Research and Technology 2020 10.1007/s42947-020-0173-2 Open DOISearch in Google Scholar

B. M. Mithun, “Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate,” 2017. MithunB. M. “Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate,” 2017 Search in Google Scholar

IS-1199(Part2), “Fresh Concrete—Methods of Sampling, Testing and Analysis; Part 2 Determination of Consistency of Fresh Concrete,” 2018, Bureau of Indian Standards, New Delhi. IS-1199(Part2) “Fresh Concrete—Methods of Sampling, Testing and Analysis; Part 2 Determination of Consistency of Fresh Concrete,” 2018 Bureau of Indian Standards New Delhi Search in Google Scholar

B. of Indian Standards, “IS 5816 (1999): Method of Test Splitting Tensile Strength of Concrete”. B. of Indian Standards “IS 5816 (1999): Method of Test Splitting Tensile Strength of Concrete” Search in Google Scholar

N. Anil Kumar Reddy and K. Ramujee, “Comparative study on mechanical properties of fly ash & GGBFS based geopolymer concrete and OPC concrete using nano-alumina,” Mater Today Proc, vol. 60, pp. 399–404, 2022, doi: 10.1016/j.matpr.2022.01.260. Anil Kumar ReddyN. RamujeeK. “Comparative study on mechanical properties of fly ash & GGBFS based geopolymer concrete and OPC concrete using nano-alumina,” Mater Today Proc 60 399 404 2022 10.1016/j.matpr.2022.01.260 Open DOISearch in Google Scholar

E. Mohseni, M. J. Kazemi, M. Koushkbaghi, B. Zehtab, and B. Behforouz, “Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina,” Constr Build Mater, vol. 209, pp. 532–540, Jun. 2019, doi: 10.1016/j.conbuildmat.2019.03.067. MohseniE. KazemiM. J. KoushkbaghiM. ZehtabB. BehforouzB. “Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina,” Constr Build Mater 209 532 540 Jun. 2019 10.1016/j.conbuildmat.2019.03.067 Open DOISearch in Google Scholar

S. Shahbazpanahi, M. K. Tajara, R. H. Faraj, and A. Mosavi, “Studying the C–H Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica,” Crystals (Basel), vol. 11, no. 2, p. 122, Jan. 2021, doi: 10.3390/cryst11020122. ShahbazpanahiS. TajaraM. K. FarajR. H. MosaviA. “Studying the C–H Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica,” Crystals (Basel) 11 2 122 Jan. 2021 10.3390/cryst11020122 Open DOISearch in Google Scholar

K. P. Bautista-Gutierrez, A. L. Herrera-May, J. M. Santamaría-López, A. Honorato-Moreno, and S. A. Zamora-Castro, “Recent Progress in Nanomaterials for Modern Concrete Infrastructure: Advantages and Challenges,” Materials, vol. 12, no. 21, p. 3548, Oct. 2019, doi: 10.3390/ma12213548. Bautista-GutierrezK. P. Herrera-MayA. L. Santamaría-LópezJ. M. Honorato-MorenoA. Zamora-CastroS. A. “Recent Progress in Nanomaterials for Modern Concrete Infrastructure: Advantages and Challenges,” Materials 12 21 3548 Oct. 2019 10.3390/ma12213548 Open DOISearch in Google Scholar

M. A. Faris et al., “Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete,” MATEC Web of Conferences, vol. 78, p. 01068, Oct. 2016, doi: 10.1051/matecconf/20167801068. FarisM. A. “Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete,” MATEC Web of Conferences 78 01068 Oct. 2016 10.1051/matecconf/20167801068 Open DOISearch in Google Scholar

H. A. Abdel-Gawwad, M. S. Mohammed, and T. Alomayri, “Single and dual effects of magnesia and alumina nano-particles on strength and drying shrinkage of alkali activated slag,” Constr Build Mater, vol. 228, p. 116827, Dec. 2019, doi: 10.1016/j.conbuildmat.2019.116827. Abdel-GawwadH. A. MohammedM. S. AlomayriT. “Single and dual effects of magnesia and alumina nano-particles on strength and drying shrinkage of alkali activated slag,” Constr Build Mater 228 116827 Dec. 2019 10.1016/j.conbuildmat.2019.116827 Open DOISearch in Google Scholar

A. Hakamy, F. U. A. Shaikh, and I. M. Low, “Characteristics of nanoclay and calcined nanoclay-cement nanocomposites,” Composites Part B-engineering, 2015, doi: 10.1016/J.COMPOSITESB.2015.03.074. HakamyA. ShaikhF. U. A. LowI. M. “Characteristics of nanoclay and calcined nanoclay-cement nanocomposites,” Composites Part B-engineering 2015 10.1016/J.COMPOSITESB.2015.03.074 Open DOISearch in Google Scholar

J. J. Ekaputri, C. Fujiyama, N. Chijiwa, T. D. Ho, and H. T. Nguyen, “Improving Geopolymer Characteristics with Addition of Poly-Vinyl Alcohol (PVA) Fibers,” Civil Engineering Dimension, vol. 23, no. 1, pp. 28–34, Apr. 2021, doi: 10.9744/ced.23.1.28-34. EkaputriJ. J. FujiyamaC. ChijiwaN. HoT. D. NguyenH. T. “Improving Geopolymer Characteristics with Addition of Poly-Vinyl Alcohol (PVA) Fibers,” Civil Engineering Dimension 23 1 28 34 Apr. 2021 10.9744/ced.23.1.28-34 Open DOISearch in Google Scholar

A. Ashrafian, M. J. Taheri Amiri, M. Rezaie-Balf, T. Ozbakkaloglu, and O. Lotfi-Omran, “Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods,” Constr Build Mater, vol. 190, pp. 479–494, Nov. 2018, doi: 10.1016/j.conbuildmat.2018.09.047. AshrafianA. Taheri AmiriM. J. Rezaie-BalfM. OzbakkalogluT. Lotfi-OmranO. “Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods,” Constr Build Mater 190 479 494 Nov. 2018 10.1016/j.conbuildmat.2018.09.047 Open DOISearch in Google Scholar

M. F.M. Zain and S. M. Abd, “Multiple Regression Model for Compressive Strength Prediction of High Performance Concrete,” Journal of Applied Sciences, vol. 9, no. 1, pp. 155–160, Dec. 2008, doi: 10.3923/jas.2009.155.160. ZainM. F.M. AbdS. M. “Multiple Regression Model for Compressive Strength Prediction of High Performance Concrete,” Journal of Applied Sciences 9 1 155 160 Dec. 2008 10.3923/jas.2009.155.160 Open DOISearch in Google Scholar

G.-H. Kim, J.-M. Shin, S. Kim, and Y. Shin, “Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine,” Journal of Building Construction and Planning Research, vol. 01, no. 01, pp. 1–7, 2013, doi: 10.4236/jbcpr.2013.11001. KimG.-H. ShinJ.-M. KimS. ShinY. “Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine,” Journal of Building Construction and Planning Research 01 01 1 7 2013 10.4236/jbcpr.2013.11001 Open DOISearch in Google Scholar

A. F. Hayes, “Statistical Methods for Communication Science.” HayesA. F. “Statistical Methods for Communication Science.” Search in Google Scholar

S. V. Patil, K. Balakrishna Rao, and G. Nayak, “Prediction of recycled coarse aggregate concrete mechanical properties using multiple linear regression and artificial neural network,” Journal of Engineering, Design and Technology, vol. 21, no. 6, pp. 1690–1709, Nov. 2023, doi: 10.1108/JEDT-07-2021-0373. PatilS. V. Balakrishna RaoK. NayakG. “Prediction of recycled coarse aggregate concrete mechanical properties using multiple linear regression and artificial neural network,” Journal of Engineering, Design and Technology 21 6 1690 1709 Nov. 2023 10.1108/JEDT-07-2021-0373 Open DOISearch in Google Scholar

H. Almuallim, S. Kaneda, and Y. Akiba, “3 DEVELOPMENT AND APPLICATIONS OF DECISION TREES,” 2002. AlmuallimH. KanedaS. AkibaY. “3 DEVELOPMENT AND APPLICATIONS OF DECISION TREES,” 2002 Search in Google Scholar

B. A. Young, A. Hall, L. Pilon, P. Gupta, and G. Sant, “Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods,” Cem Concr Res, vol. 115, pp. 379–388, Jan. 2019, doi: 10.1016/j.cemconres.2018.09.006. YoungB. A. HallA. PilonL. GuptaP. SantG. “Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods,” Cem Concr Res 115 379 388 Jan. 2019 10.1016/j.cemconres.2018.09.006 Open DOISearch in Google Scholar

T. Hastie, R. Tibshirani, and J. Friedman, “Springer Series in Statistics The Elements of Statistical Learning Data Mining, Inference, and Prediction.” HastieT. TibshiraniR. FriedmanJ. “Springer Series in Statistics The Elements of Statistical Learning Data Mining, Inference, and Prediction.” Search in Google Scholar

M. Timur Cihan, “Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods,” Advances in Civil Engineering, vol. 2019, no. 1, Jan. 2019, doi: 10.1155/2019/3069046. Timur CihanM. “Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods,” Advances in Civil Engineering 2019 1 Jan. 2019 10.1155/2019/3069046 Open DOISearch in Google Scholar

G. Biau and E. Scornet, “A random forest guided tour,” TEST, vol. 25, no. 2, pp. 197–227, Jun. 2016, doi: 10.1007/s11749-016-0481-7. BiauG. ScornetE. “A random forest guided tour,” TEST 25 2 197 227 Jun. 2016 10.1007/s11749-016-0481-7 Open DOISearch in Google Scholar

L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324. BreimanL. “Random Forests,” Mach Learn 45 1 5 32 2001 10.1023/A:1010933404324 Open DOISearch in Google Scholar

M. A. DeRousseau, E. Laftchiev, J. R. Kasprzyk, B. Rajagopalan, and W. V. Srubar, “A comparison of machine learning methods for predicting the compressive strength of field-placed concrete,” Constr Build Mater, vol. 228, p. 116661, Dec. 2019, doi: 10.1016/j.conbuildmat.2019.08.042. DeRousseauM. A. LaftchievE. KasprzykJ. R. RajagopalanB. SrubarW. V. “A comparison of machine learning methods for predicting the compressive strength of field-placed concrete,” Constr Build Mater 228 116661 Dec. 2019 10.1016/j.conbuildmat.2019.08.042 Open DOISearch in Google Scholar

F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011, [Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.html PedregosaF. “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research 12 85 2825 2830 2011 [Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.html Search in Google Scholar

H. Nguyen, T. Vu, T. P. Vo, and H.-T. Thai, “Efficient machine learning models for prediction of concrete strengths,” Constr Build Mater, vol. 266, p. 120950, Jan. 2021, doi: 10.1016/j.conbuildmat.2020.120950. NguyenH. VuT. VoT. P. ThaiH.-T. “Efficient machine learning models for prediction of concrete strengths,” Constr Build Mater 266 120950 Jan. 2021 10.1016/j.conbuildmat.2020.120950 Open DOISearch in Google Scholar

R. Cook, J. Lapeyre, H. Ma, and A. Kumar, “Prediction of Compressive Strength of Concrete: Critical Comparison of Performance of a Hybrid Machine Learning Model with Standalone Models,” Journal of Materials in Civil Engineering, vol. 31, no. 11, Nov. 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002902. CookR. LapeyreJ. MaH. KumarA. “Prediction of Compressive Strength of Concrete: Critical Comparison of Performance of a Hybrid Machine Learning Model with Standalone Models,” Journal of Materials in Civil Engineering 31 11 Nov. 2019 10.1061/(ASCE)MT.1943-5533.0002902 Open DOISearch in Google Scholar

K. Yan and C. Shi, “Prediction of elastic modulus of normal and high strength concrete by support vector machine,” Constr Build Mater, vol. 24, no. 8, pp. 1479–1485, Aug. 2010, doi: 10.1016/j.conbuildmat.2010.01.006. YanK. ShiC. “Prediction of elastic modulus of normal and high strength concrete by support vector machine,” Constr Build Mater 24 8 1479 1485 Aug. 2010 10.1016/j.conbuildmat.2010.01.006 Open DOISearch in Google Scholar

V. N. Vapnik, The Nature of Statistical Learning Theory. New York, NY: Springer New York, 2000. doi: 10.1007/978-1-4757-3264-1. VapnikV. N. The Nature of Statistical Learning Theory New York, NY Springer New York 2000 10.1007/978-1-4757-3264-1 Open DOISearch in Google Scholar

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans Intell Syst Technol, vol. 2, Aug. 2007. ChangC.-C. LinC.-J. “LIBSVM: A library for support vector machines,” ACM Trans Intell Syst Technol 2 Aug. 2007 Search in Google Scholar

F. Nelli, “Machine Learning with scikit-learn,” in Python Data Analytics, Berkeley, CA: Apress, 2018, pp. 313–347. doi: 10.1007/978-1-4842-3913-1_8. NelliF. “Machine Learning with scikit-learn,” in Python Data Analytics Berkeley, CA Apress 2018 313 347 10.1007/978-1-4842-3913-1_8 Open DOISearch in Google Scholar

D. P. Solomatine and D. L. Shrestha, “AdaBoost.RT: a boosting algorithm for regression problems,” in 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), IEEE, pp. 1163–1168. doi: 10.1109/IJCNN.2004.1380102. SolomatineD. P. ShresthaD. L. “AdaBoost.RT: a boosting algorithm for regression problems,” 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) IEEE 1163 1168 10.1109/IJCNN.2004.1380102 Open DOISearch in Google Scholar

Y. Freund and R. E. Schapire, “A Short Introduction to Boosting,” 1999. [Online]. Available: https://api.semanticscholar.org/CorpusID:9621074 FreundY. SchapireR. E. “A Short Introduction to Boosting,” 1999 [Online]. Available: https://api.semanticscholar.org/CorpusID:9621074 Search in Google Scholar

Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in International Conference on Machine Learning, 1996. [Online]. Available: https://api.semanticscholar.org/CorpusID:1836349 FreundY. SchapireR. E. “Experiments with a New Boosting Algorithm,” in International Conference on Machine Learning 1996 [Online]. Available: https://api.semanticscholar.org/CorpusID:1836349 Search in Google Scholar

R. E. Schapire, “Explaining AdaBoost,” in Empirical Inference, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 37–52. doi: 10.1007/978-3-642-41136-6_5. SchapireR. E. “Explaining AdaBoost,” in Empirical Inference Berlin, Heidelberg Springer Berlin Heidelberg 2013 37 52 10.1007/978-3-642-41136-6_5 Open DOISearch in Google Scholar

J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,” The Annals of Statistics, vol. 29, no. 5, Oct. 2001, doi: 10.1214/aos/1013203451. FriedmanJ. H. “Greedy function approximation: A gradient boosting machine.,” The Annals of Statistics 29 5 Oct. 2001 10.1214/aos/1013203451 Open DOISearch in Google Scholar

R. Zemel and T. Pitassi, “A Gradient-Based Boosting Algorithm for Regression Problems,” Aug. 2001. ZemelR. PitassiT. “A Gradient-Based Boosting Algorithm for Regression Problems,” Aug. 2001 Search in Google Scholar

J. H. Friedman, “Stochastic gradient boosting,” Comput Stat Data Anal, vol. 38, no. 4, pp. 367–378, Feb. 2002, doi: 10.1016/S0167-9473(01)00065-2. FriedmanJ. H. “Stochastic gradient boosting,” Comput Stat Data Anal 38 4 367 378 Feb. 2002 10.1016/S0167-9473(01)00065-2 Open DOISearch in Google Scholar

D. N. Lawley, “Tests of Significance for the Latent Roots of Covariance and Correlation Matrices,” Biometrika, vol. 43, no. 1/2, p. 128, Jun. 1956, doi: 10.2307/2333586. LawleyD. N. “Tests of Significance for the Latent Roots of Covariance and Correlation Matrices,” Biometrika 43 1/2 128 Jun. 1956 10.2307/2333586 Open DOISearch in Google Scholar

J. H. Steiger, “Tests for comparing elements of a correlation matrix.,” Psychol Bull, vol. 87, no. 2, pp. 245–251, Mar. 1980, doi: 10.1037/0033-2909.87.2.245. SteigerJ. H. “Tests for comparing elements of a correlation matrix.,” Psychol Bull 87 2 245 251 Mar. 1980 10.1037/0033-2909.87.2.245 Open DOISearch in Google Scholar

Q. Ma, J. Li, M. Aamer, and G. Huang, “Effect of Chinese Milk Vetch (Astragalus sinicus L.) and Rice Straw Incorporated in Paddy Soil on Greenhouse Gas Emission and Soil Properties,” Agronomy, vol. 10, no. 5, p. 717, May 2020, doi: 10.3390/agronomy10050717. MaQ. LiJ. AamerM. HuangG. “Effect of Chinese Milk Vetch (Astragalus sinicus L.) and Rice Straw Incorporated in Paddy Soil on Greenhouse Gas Emission and Soil Properties,” Agronomy 10 5 717 May 2020 10.3390/agronomy10050717 Open DOISearch in Google Scholar

R. Alyousef et al., “Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures,” Case Studies in Construction Materials, vol. 19, Dec. 2023, doi: 10.1016/j.cscm.2023.e02418. AlyousefR. “Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures,” Case Studies in Construction Materials 19 Dec. 2023 10.1016/j.cscm.2023.e02418 Open DOISearch in Google Scholar