Department of Materials Engineering and Construction Processes, Faculty of Civil Engineering, Wrocław University of Science and TechnologyWrocław, Poland
Department of Materials Engineering and Construction Processes, Faculty of Civil Engineering, Wrocław University of Science and TechnologyWrocław, Poland
Department of Civil Engineering, Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT)India
Department of Materials Engineering and Construction Processes, Faculty of Civil Engineering, Wrocław University of Science and TechnologyWrocław, Poland
This work is licensed under the Creative Commons Attribution 4.0 International License.
S. Marathe, A.U.R.U.R.R. Shankar, Investigations on Bio-enzyme Stabilized Pavement Subgrades of Lateritic, Lithomargic and Blended Soils, Int. J. Pavement Res. Technol. 16 (2023) 15–25. https://doi.org/10.1007/s42947-021-00107-0.MaratheS.ShankarA.U.R.U.R.R.Investigations on Bio-enzyme Stabilized Pavement Subgrades of Lateritic, Lithomargic and Blended SoilsInt. J. Pavement Res. Technol.1620231525https://doi.org/10.1007/s42947-021-00107-0.Search in Google Scholar
A.U.R. Shankar, A. Chandrashekhar, P. Bhat, H, Experimental Investigation on Lithomargic Clay Stabilized with Sand and Coir, Indian Highw. 40 (2012) 21–31. https://trid.trb.org/view/1132871.ShankarA.U.R.ChandrashekharA.BhatP.H, Experimental Investigation on Lithomargic Clay Stabilized with Sand and CoirIndian Highw.4020122131https://trid.trb.org/view/1132871.Search in Google Scholar
S.B. Malegole, P. Pranab, Sustainable use of recycled concrete aggregates and waste rubber shreds in drainage layer of landfills, in: Japanese Geotech. Soc. Spec. Publ., Mangalore, 2021: pp. 221–225. https://doi.org/10.3208/jgssp.v09.cpeg066.MalegoleS.B.PranabP.Sustainable use of recycled concrete aggregates and waste rubber shreds in drainage layer of landfillsin:Japanese Geotech. Soc. Spec. Publ.Mangalore2021221225https://doi.org/10.3208/jgssp.v09.cpeg066.Search in Google Scholar
V. Vunnam, M. Sahil Ali, A. Singh, J. Asundi, Construction and Demolition Waste Utilisation for Recycled Products in Bengaluru: Challenges and Prospects, Solut. Exch. Urban Transform. India. (2016) 54. https://smartnet.niua.org/content/8dc4e2a3-9ddc-42e8-82fd-c9f1787a8dba.VunnamV.Sahil AliM.SinghA.AsundiJ.Construction and Demolition Waste Utilisation for Recycled Products in Bengaluru: Challenges and ProspectsSolut. Exch. Urban Transform. India.201654https://smartnet.niua.org/content/8dc4e2a3-9ddc-42e8-82fd-c9f1787a8dba.Search in Google Scholar
S.J. Ramezani, M.M. Toufigh, V. Toufigh, Utilization of Glass Powder and Silica Fume in Sugarcane Bagasse Ash-Based Geopolymer for Soil Stabilization, J. Mater. Civ. Eng. 35 (2023) 1–20. https://doi.org/10.1061/(asce)mt.1943-5533.0004704.RamezaniS.J.ToufighM.M.ToufighV.Utilization of Glass Powder and Silica Fume in Sugarcane Bagasse Ash-Based Geopolymer for Soil StabilizationJ. Mater. Civ. Eng.352023120https://doi.org/10.1061/(asce)mt.1943-5533.0004704.Search in Google Scholar
C. Teerawattanasuk, P. Voottipruex, Comparison between cement and fly ash geopolymer for stabilized marginal lateritic soil as road material, Int. J. Pavement Eng. 20 (2019) 1264–1274. https://doi.org/10.1080/10298436.2017.1402593.TeerawattanasukC.VoottipruexP.Comparison between cement and fly ash geopolymer for stabilized marginal lateritic soil as road materialInt. J. Pavement Eng.20201912641274https://doi.org/10.1080/10298436.2017.1402593.Search in Google Scholar
D.C.D.C. Sekhar, S. Nayak, H.K.K. Preetham, Influence of Granulated Blast Furnace Slag and Cement on the Strength Properties of Lithomargic Clay, Indian Geotech. J. 47 (2017) 384–392. https://doi.org/10.1007/s40098-017-0228-8.SekharD.C.D.C.NayakS.PreethamH.K.K.Influence of Granulated Blast Furnace Slag and Cement on the Strength Properties of Lithomargic ClayIndian Geotech. J.472017384392https://doi.org/10.1007/s40098-017-0228-8.Search in Google Scholar
S. Marathe, B. Shankar Rao, A. Kumar, Stabilization of Lithomargic Soil Using Cement and Randomly Distributed Waste Shredded Rubber Tyre Chips, Int. J. Eng. Trends Technol. 23 (2015) 284–288. https://doi.org/10.14445/22315381/ijett-v23p253.MaratheS.Shankar RaoB.KumarA.Stabilization of Lithomargic Soil Using Cement and Randomly Distributed Waste Shredded Rubber Tyre ChipsInt. J. Eng. Trends Technol.232015284288https://doi.org/10.14445/22315381/ijett-v23p253.Search in Google Scholar
D.C. Sekhar, Studies on Lithomargic Clay Stabilized uing Granulated Blast Furnace Slag and Cement, National Institute of Technology Karnataka, Surathkal, India, 2017.SekharD.C.Studies on Lithomargic Clay Stabilized uing Granulated Blast Furnace Slag and CementNational Institute of Technology KarnatakaSurathkal, India2017Search in Google Scholar
P.A. Naik, S. Marathe, S. Akhila, B.G.M. Mayuri, Properties of WFS Incorporated Cement Stabilized Lateritic Soil Subgrades for Rural Pavement Applications, Int. J. Geosynth. Gr. Eng. 9 (2023) 1–17. https://doi.org/10.1007/s40891-023-00460-z.NaikP.A.MaratheS.AkhilaS.MayuriB.G.M.Properties of WFS Incorporated Cement Stabilized Lateritic Soil Subgrades for Rural Pavement ApplicationsInt. J. Geosynth. Gr. Eng.92023117https://doi.org/10.1007/s40891-023-00460-z.Search in Google Scholar
A. Patel, Soil Stabilization, in: Geotech. Investig. Improv. Gr. Cond., Woodhead Publishing Series in Civil and Structural Engineering, 2019: pp. 19–27. https://doi.org/10.1016/B978-0-12-817048-9.00003-2.PatelA.Soil Stabilizationin:Geotech. Investig. Improv. Gr. Cond.Woodhead Publishing Series in Civil and Structural Engineering20191927https://doi.org/10.1016/B978-0-12-817048-9.00003-2.Search in Google Scholar
A. Anburuvel, N. Sathiparan, G.M.A. Dhananjaya, A. Anuruththan, Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigation, Constr. Build. Mater. 387 (2023) 131659. https://doi.org/10.1016/j.conbuildmat.2023.131659.AnburuvelA.SathiparanN.DhananjayaG.M.A.AnuruththanA.Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigationConstr. Build. Mater.3872023131659https://doi.org/10.1016/j.conbuildmat.2023.131659.Search in Google Scholar
A. Shivaramaiah, A.U. Ravi Shankar, A. Singh, K.H. Pammar, Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement construction, Int. J. Pavement Res. Technol. 13 (2020) 478–488. https://doi.org/10.1007/s42947-020-0251-5.ShivaramaiahA.Ravi ShankarA.U.SinghA.PammarK.H.Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement constructionInt. J. Pavement Res. Technol.132020478488https://doi.org/10.1007/s42947-020-0251-5.Search in Google Scholar
S. Amulya, A.U.U. Ravi Shankar, M. Praveen, Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag, Int. J. Pavement Eng. 21 (2020) 1114–1121. https://doi.org/10.1080/10298436.2018.1521520.AmulyaS.Ravi ShankarA.U.U.PraveenM.Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slagInt. J. Pavement Eng.21202011141121https://doi.org/10.1080/10298436.2018.1521520.Search in Google Scholar
S. Marathe, A.K.A.K. Bhat, N.M.M. Ashmitha, P.K.K. Akarsh, Stabilized Lithomargic Soil Subgrades for Low Volume Road Design Using Industrial Wastes, Int. J. Pavement Res. Technol. (2023) 1–12. https://doi.org/10.1007/s42947-023-00317-8.MaratheS.BhatA.K.A.K.AshmithaN.M.M.AkarshP.K.K.Stabilized Lithomargic Soil Subgrades for Low Volume Road Design Using Industrial WastesInt. J. Pavement Res. Technol.2023112https://doi.org/10.1007/s42947-023-00317-8.Search in Google Scholar
IRC:SP:62, Guidelines for Design and Construction of Cement Concrete Pavements for Low Volume Roads, (2014) 1–35.IRC:SP:62, Guidelines for Design and Construction of Cement Concrete Pavements for Low Volume Roads2014135Search in Google Scholar
IRC:SP-72, Guidelines for the design of flexible pavements for Low Volume Rural Roads (First Revision), (2015) 1–51.IRC:SP-72, Guidelines for the design of flexible pavements for Low Volume Rural Roads (First Revision)2015151Search in Google Scholar
N.A. Saputra, R. Putra, The Correlation between CBR (California Bearing Ratio) and UCS (Unconfined Compression Strength) Laterite Soils in Palangka Raya as Heap Material, IOP Conf. Ser. Earth Environ. Sci. 469 (2020) 1–7. https://doi.org/10.1088/1755-1315/469/1/012093.SaputraN.A.PutraR.The Correlation between CBR (California Bearing Ratio) and UCS (Unconfined Compression Strength) Laterite Soils in Palangka Raya as Heap MaterialIOP Conf. Ser. Earth Environ. Sci.469202017https://doi.org/10.1088/1755-1315/469/1/012093.Search in Google Scholar
J. Davidovits, Geopolymers - Inorganic polymeric new materials, J. Therm. Anal. 37 (1991) 1633–1656. https://doi.org/10.1007/BF01912193.DavidovitsJ.Geopolymers - Inorganic polymeric new materialsJ. Therm. Anal.37199116331656https://doi.org/10.1007/BF01912193.Search in Google Scholar
P. Duxson, A. Fernández-Jiménez, J.L.L. Provis, G.C.C. Lukey, A. Palomo, J.S.J.S.J. Van Deventer, Geopolymer technology: The current state of the art, J. Mater. Sci. 42 (2007) 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.DuxsonP.Fernández-JiménezA.ProvisJ.L.L.LukeyG.C.C.PalomoA.Van DeventerJ.S.J.S.J.Geopolymer technology: The current state of the artJ. Mater. Sci.42200729172933https://doi.org/10.1007/s10853-006-0637-z.Search in Google Scholar
J.L. Provis, J.S.J. Van Deventer, Alkali Activated Materials, State-of-the-Art Report, RILEM TC 224-AAM, Alkali Act. Mater. (2014).ProvisJ.L.Van DeventerJ.S.J.Alkali Activated Materials, State-of-the-Art Report, RILEM TC 224-AAMAlkali Act. Mater.2014Search in Google Scholar
Y.-M. Liew, C.-Y. Heah, A.B. Mohd Mustafa, H. Kamarudin, Structure and properties of clay-based geopolymer cements: A review, Prog. Mater. Sci. 83 (2016) 595–629. https://doi.org/https://doi.org/10.1016/j.pmatsci.2016.08.002.LiewY.-M.HeahC.-Y.Mohd MustafaA.B.KamarudinH.Structure and properties of clay-based geopolymer cements: A reviewProg. Mater. Sci.832016595629https://doi.org/https://doi.org/10.1016/j.pmatsci.2016.08.002.Search in Google Scholar
M. Almakhadmeh, A.M. Soliman, Effects of mixing water temperatures on properties of one-part alkali-activated slag paste, Constr. Build. Mater. 266 (2021) 1–13. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.121030.AlmakhadmehM.SolimanA.M.Effects of mixing water temperatures on properties of one-part alkali-activated slag pasteConstr. Build. Mater.2662021113https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.121030.Search in Google Scholar
Y.N. Sheen, D.H. Le, Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended Pastes, Sugar Tech. 24 (2022) 1037–1051. https://doi.org/10.1007/s12355-022-01141-3.SheenY.N.LeD.H.Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended PastesSugar Tech.24202210371051https://doi.org/10.1007/s12355-022-01141-3.Search in Google Scholar
J.S. Yadav, S.K. Tiwari, A study on the potential utilization of crumb rubber in cement treated soft clay, J. Build. Eng. 9 (2017) 177–191. https://doi.org/10.1016/j.jobe.2017.01.001.YadavJ.S.TiwariS.K.A study on the potential utilization of crumb rubber in cement treated soft clayJ. Build. Eng.92017177191https://doi.org/10.1016/j.jobe.2017.01.001.Search in Google Scholar
T. Phoo-Ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, P. Chindaprasirt, Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer, Constr. Build. Mater. 91 (2015) 1–8. https://doi.org/10.1016/j.conbuildmat.2015.05.001.Phoo-NgernkhamT.MaegawaA.MishimaN.HatanakaS.ChindaprasirtP.Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymerConstr. Build. Mater.91201518https://doi.org/10.1016/j.conbuildmat.2015.05.001.Search in Google Scholar
Y. Yi, C. Li, S. Liu, Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay, J. Mater. Civ. Eng. 27 (2015) 1–7. https://doi.org/10.1061/(asce)mt.1943-5533.0001100.YiY.LiC.LiuS.Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft ClayJ. Mater. Civ. Eng.27201517https://doi.org/10.1061/(asce)mt.1943-5533.0001100.Search in Google Scholar
R. Firdous, D. Stephan, Effect of silica modulus on the geopolymerization activity of natural pozzolans, Constr. Build. Mater. 219 (2019) 31–43. https://doi.org/10.1016/j.conbuildmat.2019.05.161.FirdousR.StephanD.Effect of silica modulus on the geopolymerization activity of natural pozzolansConstr. Build. Mater.21920193143https://doi.org/10.1016/j.conbuildmat.2019.05.161.Search in Google Scholar
H.-J. Ho, A. Iizuka, E. Shibata, Chemical recycling and use of various types of concrete waste: A review, J. Clean. Prod. 284 (2021) 124785. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124785.HoH.-J.IizukaA.ShibataE.Chemical recycling and use of various types of concrete waste: A reviewJ. Clean. Prod.2842021124785https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124785.Search in Google Scholar
S.R. Kaniraj, V. Gayathri, Factors influencing the strength of cement fly ash base courses, J. Transp. Eng. 129 (2003) 538–548. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(538).KanirajS.R.GayathriV.Factors influencing the strength of cement fly ash base coursesJ. Transp. Eng.1292003538548https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(538).Search in Google Scholar
A.U.R. Shankar, S. Amulya, Use of Stabilized Lateritic and Black Cotton Soils as a Base Course Replacing Conventional Granular Layer in Flexible Pavement, Int. J. Geosynth. Gr. Eng. 6 (2020) 1–12. https://doi.org/10.1007/s40891-020-0184-8.ShankarA.U.R.AmulyaS.Use of Stabilized Lateritic and Black Cotton Soils as a Base Course Replacing Conventional Granular Layer in Flexible PavementInt. J. Geosynth. Gr. Eng.62020112https://doi.org/10.1007/s40891-020-0184-8.Search in Google Scholar