Otwarty dostęp

Does water lubrication affect friction differently for rocks and soils? Evidence and open questions


Zacytuj

Alejano, L. R., González, J., & Muralha, J. (2012). Comparison of different techniques of tilt testing and basic friction angle variability assessment. Rock Mechanics and Rock Engineering, 45(6), 1023–1035. AlejanoL. R. GonzálezJ. MuralhaJ. 2012 Comparison of different techniques of tilt testing and basic friction angle variability assessment Rock Mechanics and Rock Engineering 45 6 1023 1035 10.1007/s00603-012-0265-7 Search in Google Scholar

Altuhafi, F., & Coop, M. R. (2011). Changes to particle characteristics associated with the compression of sands. Géotechnique, 61(6), 459–471. AltuhafiF. CoopM. R. 2011 Changes to particle characteristics associated with the compression of sands Géotechnique 61 6 459 471 10.1680/geot.9.P.114 Search in Google Scholar

Bai, Y., & Wierzbicki, T. (2010). Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture, 161(1), 1–20. BaiY. WierzbickiT. 2010 Application of extended Mohr–Coulomb criterion to ductile fracture International Journal of Fracture 161 1 1 20 10.1007/s10704-009-9422-8 Search in Google Scholar

Barton, N. (1971). A relationship between joint roughness and joint shear strength. Rock Fracture-Proc, Int. Symp. on Rock Mechanics, Nancy, France, BartonN. 1971 A relationship between joint roughness and joint shear strength Rock Fracture-Proc, Int. Symp. on Rock Mechanics Nancy, France Search in Google Scholar

Barton, N. (1973). Review of a new shear-strength criterion for rock joints. Engineering geology, 7(4), 287–332. BartonN. 1973 Review of a new shear-strength criterion for rock joints Engineering geology 7 4 287 332 10.1016/0013-7952(73)90013-6 Search in Google Scholar

Blair, D. L., Mueggenburg, N. W., Marshall, A. H., Jaeger, H. M., & Nagel, S. R. (2001). Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction. Physical review E, 63(4), 041304. BlairD. L. MueggenburgN. W. MarshallA. H. JaegerH. M. NagelS. R. 2001 Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction Physical review E 63 4 041304 10.1103/PhysRevE.63.041304 Search in Google Scholar

Bowden, F. P., & Tabor, D. (1964). The Friction and Lubrication of Solids-Part II. Oxford, England, University Press. BowdenF. P. TaborD. 1964 The Friction and Lubrication of Solids-Part II Oxford, England University Press Search in Google Scholar

Braun, P., Tzortzopoulos, G., & Stefanou, I. (2021). Design of Sand-Based, 3-D-Printed Analog Faults With Controlled Frictional Properties. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB020520. BraunP. TzortzopoulosG. StefanouI. 2021 Design of Sand-Based, 3-D-Printed Analog Faults With Controlled Frictional Properties Journal of Geophysical Research: Solid Earth 126 5 e2020JB020520 10.1029/2020JB020520 Search in Google Scholar

Bromwell, L. G. (1966). The friction of quartz in high vacuum. Research in Earth Physics (Research Report R66-18). Massachusetts Institute of Technology. BromwellL. G. 1966 The friction of quartz in high vacuum Research in Earth Physics (Research Report R66-18). Massachusetts Institute of Technology Search in Google Scholar

Calvetti, F. (2008). Discrete modelling of granular materials and geotechnical problems. European Journal of Environmental and Civil Engineering, 951–965. CalvettiF. 2008 Discrete modelling of granular materials and geotechnical problems European Journal of Environmental and Civil Engineering 951 965 10.1080/19648189.2008.9693055 Search in Google Scholar

Calvetti, F., Di Prisco, C., & Nova, R. (2004). Experimental and numerical analysis of soil–pipe interaction. Journal of geotechnical and geoenvironmental engineering, 130(12), 1292–1299. CalvettiF. Di PriscoC. NovaR. 2004 Experimental and numerical analysis of soil–pipe interaction Journal of geotechnical and geoenvironmental engineering 130 12 1292 1299 10.1061/(ASCE)1090-0241(2004)130:12(1292) Search in Google Scholar

Carpinteri, A., & Pugno, N. (2005). Are scaling laws on strength of solids related to mechanics or to geometry? Nature materials, 4(6), 421–423. CarpinteriA. PugnoN. 2005 Are scaling laws on strength of solids related to mechanics or to geometry? Nature materials 4 6 421 423 10.1038/nmat140815928689 Search in Google Scholar

Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430–450. CesarettiG. DiniE. De KestelierX. CollaV. PambaguianL. 2014 Building components for an outpost on the Lunar soil by means of a novel 3D printing technology Acta Astronautica 93 430 450 10.1016/j.actaastro.2013.07.034 Search in Google Scholar

Cherblanc, F., Berthonneau, J., Bromblet, P., & Huon, V. (2016). Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content. Rock Mechanics and Rock Engineering, 49(6), 2033–2042. CherblancF. BerthonneauJ. BrombletP. HuonV. 2016 Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content Rock Mechanics and Rock Engineering 49 6 2033 2042 10.1007/s00603-015-0911-y Search in Google Scholar

Coulomb, C. A. (1776). Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture. Paris: De l’Imprimerie Royale. CoulombC. A. 1776 Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture Paris De l’Imprimerie Royale Search in Google Scholar

Desideri, A., Fontanella, E., & Pagano, L. (2013). Pore water pressure distribution for use in stability analyses of earth dams. In Landslide Science and Practice (pp. 149–153). Springer. DesideriA. FontanellaE. PaganoL. 2013 Pore water pressure distribution for use in stability analyses of earth dams In Landslide Science and Practice 149 153 Springer 10.1007/978-3-642-31319-6_21 Search in Google Scholar

Diao, Y., & Espinosa-Marzal, R. M. (2016). Molecular insight into the nanoconfined calcite–solution interface. Proceedings of the National Academy of Sciences, 113(43), 12047–12052. DiaoY. Espinosa-MarzalR. M. 2016 Molecular insight into the nanoconfined calcite–solution interface Proceedings of the National Academy of Sciences 113 43 12047 12052 10.1073/pnas.1605920113 Search in Google Scholar

Diao, Y., & Espinosa-Marzal, R. M. (2018). The role of water in fault lubrication. Nature communications, 9(1), 1–10. DiaoY. Espinosa-MarzalR. M. 2018 The role of water in fault lubrication Nature communications 9 1 1 10 10.1038/s41467-018-04782-9 Search in Google Scholar

Dickey, J. (1966). Frictional Characteristics of Quartz.(MIT) SB thesis Massachusetts Institute of Technology Cambridge, MA, USA]. DickeyJ. 1966 Frictional Characteristics of Quartz.(MIT) SB thesis Massachusetts Institute of Technology Cambridge, MA, USA Search in Google Scholar

Dove, P. M. (1995). Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses. Journal of Geophysical Research: Solid Earth, 100(B11), 22349–22359. DoveP. M. 1995 Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses Journal of Geophysical Research: Solid Earth 100 B11 22349 22359 10.1029/95JB02155 Search in Google Scholar

Feng, X.T., Chen, S., & Li, S. (2001). Effects of water chemistry on microcracking and compressive strength of granite. Int J Rock Mech Min Sci, 38: 557–68. FengX.T. ChenS. LiS. 2001 Effects of water chemistry on microcracking and compressive strength of granite Int J Rock Mech Min Sci 38 557 68 10.1016/S1365-1609(01)00016-8 Search in Google Scholar

Gutierrez, M., Øino, L., & Nygaard, R. (2000). Stress-dependent permeability of a de-mineralised fracture in shale. Marine and Petroleum Geology, 17(8), 895–907. GutierrezM. ØinoL. NygaardR. 2000 Stress-dependent permeability of a de-mineralised fracture in shale Marine and Petroleum Geology 17 8 895 907 10.1016/S0264-8172(00)00027-1 Search in Google Scholar

Ham, T.-G., Nakata, Y., Orense, R. P., & Hyodo, M. (2010). Influence of gravel on the compression characteristics of decomposed granite soil. Journal of Geotechnical and Geoenvironmental Engineering, 136(11), 1574–1577. HamT.-G. NakataY. OrenseR. P. HyodoM. 2010 Influence of gravel on the compression characteristics of decomposed granite soil Journal of Geotechnical and Geoenvironmental Engineering 136 11 1574 1577 10.1061/(ASCE)GT.1943-5606.0000370 Search in Google Scholar

Horn, H., & Deere, D. (1962). Frictional characteristics of minerals. Geotechnique, 12(4), 319–335. HornH. DeereD. 1962 Frictional characteristics of minerals Geotechnique 12 4 319 335 10.1680/geot.1962.12.4.319 Search in Google Scholar

Hua, W., Dong, S., Li, Y., & Wang, Q. (2016). Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone. Engineering Fracture Mechanics, 153, 143–150. HuaW. DongS. LiY. WangQ. 2016 Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone Engineering Fracture Mechanics 153 143 150 10.1016/j.engfracmech.2015.11.020 Search in Google Scholar

Huang, X., Hanley, K. J., O’Sullivan, C., & Kwok, C. Y. (2014). Exploring the influence of interparticle friction on critical state behaviour using DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 38(12), 1276–1297. HuangX. HanleyK. J. O’SullivanC. KwokC. Y. 2014 Exploring the influence of interparticle friction on critical state behaviour using DEM International Journal for Numerical and Analytical Methods in Geomechanics 38 12 1276 1297 10.1002/nag.2259 Search in Google Scholar

Israelachvili, J. (2001). Tribology of ideal and non-ideal surfaces and fluids. Fundamentals of Tribology and Bridging the Gap Between the Macro-and Micro/Nanoscales, 631–650. IsraelachviliJ. 2001 Tribology of ideal and non-ideal surfaces and fluids Fundamentals of Tribology and Bridging the Gap Between the Macro-and Micro/Nanoscales 631 650 10.1007/978-94-010-0736-8_48 Search in Google Scholar

Israelachvili, J. N., & Pashley, R. M. (1983). Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 306(5940), 249–250. IsraelachviliJ. N. PashleyR. M. 1983 Molecular layering of water at surfaces and origin of repulsive hydration forces Nature 306 5940 249 250 10.1038/306249a0 Search in Google Scholar

Jaeger, J., Cook, N., & Zimmerman, R. (2007). Fundamentals of rock mechanics, 4th edn Blackwell. Maiden, MA. JaegerJ. CookN. ZimmermanR. 2007 Fundamentals of rock mechanics 4th edn Blackwell Maiden, MA Search in Google Scholar

Jappelli, R. (2003). Le costruzioni geotecniche per le grandi dighe in Italia. Rivista Italiana di Geotecnica (Italian Geotechnical Journal), 37(2), 17–78. JappelliR. 2003 Le costruzioni geotecniche per le grandi dighe in Italia Rivista Italiana di Geotecnica (Italian Geotechnical Journal) 37 2 17 78 Search in Google Scholar

Jappelli, R. (2005). Monumental dams. In Mechanical modelling and computational issues in civil engineering (pp. 1–102). Springer. JappelliR. 2005 Monumental dams In Mechanical modelling and computational issues in civil engineering 1 102 Springer 10.1007/3-540-32399-6_1 Search in Google Scholar

Karde, V., & Ghoroi, C. (2021). Humidity induced interparticle friction and its mitigation in fine powder flow. Particulate Science and Technology, 1–11. KardeV. GhoroiC. 2021 Humidity induced interparticle friction and its mitigation in fine powder flow Particulate Science and Technology 1 11 10.1080/02726351.2021.1977746 Search in Google Scholar

Kim, D., & Suh, N. (1991). On microscopic mechanisms of friction and wear. Wear, 149(1–2), 199–208. KimD. SuhN. 1991 On microscopic mechanisms of friction and wear Wear 149 1–2 199 208 10.1016/0043-1648(91)90373-3 Search in Google Scholar

Lajtai, E., Schmidtke, R., & Bielus, L. (1987). The effect of water on the time-dependent deformation and fracture of a granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, LajtaiE. SchmidtkeR. BielusL. 1987 The effect of water on the time-dependent deformation and fracture of a granite International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 10.1016/0148-9062(87)90179-3 Search in Google Scholar

Li, B., Ye, X., Dou, Z., Zhao, Z., Li, Y., & Yang, Q. (2020). Shear strength of rock fractures under dry, surface wet and saturated conditions. Rock Mechanics and Rock Engineering, 53(6), 2605–2622. LiB. YeX. DouZ. ZhaoZ. LiY. YangQ. 2020 Shear strength of rock fractures under dry, surface wet and saturated conditions Rock Mechanics and Rock Engineering 53 6 2605 2622 10.1007/s00603-020-02061-y Search in Google Scholar

Li, W., Kwok, C., Sandeep, C., & Senetakis, K. (2019). Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro-to macro-scales. Powder technology, 342, 907–916. LiW. KwokC. SandeepC. SenetakisK. 2019 Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro-to macro-scales Powder technology 342 907 916 10.1016/j.powtec.2018.10.025 Search in Google Scholar

Marone, C., & Scholz, C. (1989). Particle-size distribution and microstructures within simulated fault gouge. Journal of Structural Geology, 11(7), 799–814. MaroneC. ScholzC. 1989 Particle-size distribution and microstructures within simulated fault gouge Journal of Structural Geology 11 7 799 814 10.1016/0191-8141(89)90099-0 Search in Google Scholar

Marzulli, V., & Cafaro, F. (2019). Geotechnical properties of uncompacted DNA-1A lunar simulant. Journal of Aerospace Engineering, 32(2), 04018153. MarzulliV. CafaroF. 2019 Geotechnical properties of uncompacted DNA-1A lunar simulant Journal of Aerospace Engineering 32 2 04018153 10.1061/(ASCE)AS.1943-5525.0000983 Search in Google Scholar

Marzulli, V., Sandeep, C., Senetakis, K., Cafaro, F., & Pöschel, T. (2021). Scale and water effects on the friction angles of two granular soils with different roughness. Powder technology, 377, 813–826. MarzulliV. SandeepC. SenetakisK. CafaroF. PöschelT. 2021 Scale and water effects on the friction angles of two granular soils with different roughness Powder technology 377 813 826 10.1016/j.powtec.2020.09.060 Search in Google Scholar

Mei, C., & Wu, W. (2021). Fracture asperity evolution during the transition from stick slip to stable sliding. Philosophical Transactions of the Royal Society A, 379(2196), 20200133. MeiC. WuW. 2021 Fracture asperity evolution during the transition from stick slip to stable sliding Philosophical Transactions of the Royal Society A 379 2196 20200133 10.1098/rsta.2020.0133 Search in Google Scholar

Miura, N., & Yamanouchi, T. (1975). Effect of water on the behavior of a quartz-rich sand under high stresses. Soils and Foundations, 15(4), 23–34. MiuraN. YamanouchiT. 1975 Effect of water on the behavior of a quartz-rich sand under high stresses Soils and Foundations 15 4 23 34 10.3208/sandf1972.15.4_23 Search in Google Scholar

Motta, E. (1994). Generalized Coulomb active-earth pressure for distanced surcharge. Journal of Geotechnical Engineering, 120(6), 1072–1079. MottaE. 1994 Generalized Coulomb active-earth pressure for distanced surcharge Journal of Geotechnical Engineering 120 6 1072 1079 10.1061/(ASCE)0733-9410(1994)120:6(1072) Search in Google Scholar

Murdock, C. C. (1944). Coulomb's Law and the Dielectric Constant. American Journal of Physics, 12(4), 201–203. MurdockC. C. 1944 Coulomb's Law and the Dielectric Constant American Journal of Physics 12 4 201 203 10.1119/1.1990594 Search in Google Scholar

Nardelli, V., Coop, M., Andrade, J., & Paccagnella, F. (2017). An experimental investigation of the micromechanics of Eglin sand. Powder technology, 312, 166–174. NardelliV. CoopM. AndradeJ. PaccagnellaF. 2017 An experimental investigation of the micromechanics of Eglin sand Powder technology 312 166 174 10.1016/j.powtec.2017.02.009 Search in Google Scholar

Newmark, N. M. (1965). Effects of earthquakes on dams and embankments. Geotechnique, 15(2), 139–160. NewmarkN. M. 1965 Effects of earthquakes on dams and embankments Geotechnique 15 2 139 160 10.1680/geot.1965.15.2.139 Search in Google Scholar

Ning, L., Yunming, Z., Bo, S., & Gunter, S. (2003). A chemical damage model of sandstone in acid solution. International Journal of Rock Mechanics and Mining Sciences, 40(2), 243–249. NingL. YunmingZ. BoS. GunterS. 2003 A chemical damage model of sandstone in acid solution International Journal of Rock Mechanics and Mining Sciences 40 2 243 249 10.1016/S1365-1609(02)00132-6 Search in Google Scholar

O’Sullivan, C. (2011). Particulate discrete element modelling: a geomechanics perspective. CRC Press. O’SullivanC. 2011 Particulate discrete element modelling: a geomechanics perspective CRC Press 10.1201/9781482266498 Search in Google Scholar

Ojo, O., & Brook, N. (1990). The effect of moisture on some mechanical properties of rock. Mining Science and Technology, 10(2), 145–156. OjoO. BrookN. 1990 The effect of moisture on some mechanical properties of rock Mining Science and Technology 10 2 145 156 10.1016/0167-9031(90)90158-O Search in Google Scholar

Otsubo, M., & O’Sullivan, C. (2018). Experimental and DEM assessment of the stress-dependency of surface roughness effects on shear modulus. Soils and foundations, 58(3), 602–614. OtsuboM. O’SullivanC. 2018 Experimental and DEM assessment of the stress-dependency of surface roughness effects on shear modulus Soils and foundations 58 3 602 614 10.1016/j.sandf.2018.02.020 Search in Google Scholar

Pellet, F., Keshavarz, M., & Boulon, M. (2013). Influence of humidity conditions on shear strength of clay rock discontinuities. Engineering Geology, 157, 33–38. PelletF. KeshavarzM. BoulonM. 2013 Influence of humidity conditions on shear strength of clay rock discontinuities Engineering Geology 157 33 38 10.1016/j.enggeo.2013.02.002 Search in Google Scholar

Prölß, M., Schwarze, H., Hagemann, T., Zemella, P., & Winking, P. (2018). Theoretical and experimental investigations on transient run-up procedures of journal bearings including mixed friction conditions. Lubricants, 6(4), 105. PrölßM. SchwarzeH. HagemannT. ZemellaP. WinkingP. 2018 Theoretical and experimental investigations on transient run-up procedures of journal bearings including mixed friction conditions Lubricants 6 4 105 10.3390/lubricants6040105 Search in Google Scholar

Pugno, N. M. (2007). A general shape/size-effect law for nanoindentation. Acta Materialia, 55(6), 1947–1953. PugnoN. M. 2007 A general shape/size-effect law for nanoindentation Acta Materialia 55 6 1947 1953 10.1016/j.actamat.2006.10.053 Search in Google Scholar

Qiao, L., Wang, Z., & Huang, A. (2017). Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects. Rock Mechanics and Rock Engineering, 50(2), 255–267. QiaoL. WangZ. HuangA. 2017 Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects Rock Mechanics and Rock Engineering 50 2 255 267 10.1007/s00603-016-1111-0 Search in Google Scholar

Rattez, H., Stefanou, I., Sulem, J., Veveakis, M., & Poulet, T. (2018). Numerical analysis of strain localization in rocks with thermo-hydro-mechanical couplings using cosserat continuum. Rock Mechanics and Rock Engineering, 51(10), 3295–3311. RattezH. StefanouI. SulemJ. VeveakisM. PouletT. 2018 Numerical analysis of strain localization in rocks with thermo-hydro-mechanical couplings using cosserat continuum Rock Mechanics and Rock Engineering 51 10 3295 3311 10.1007/s00603-018-1529-7 Search in Google Scholar

Røyne, A., Dalby, K. N., & Hassenkam, T. (2015). Repulsive hydration forces between calcite surfaces and their effect on the brittle strength of calcite-bearing rocks. Geophysical Research Letters, 42(12), 4786–4794. RøyneA. DalbyK. N. HassenkamT. 2015 Repulsive hydration forces between calcite surfaces and their effect on the brittle strength of calcite-bearing rocks Geophysical Research Letters 42 12 4786 4794 10.1002/2015GL064365 Search in Google Scholar

Rymuza, Z., & Pytko, S. (2012). The effect of scale in tribological testing. Journal of Materials Research and Technology, 1(1), 13–20. RymuzaZ. PytkoS. 2012 The effect of scale in tribological testing Journal of Materials Research and Technology 1 1 13 20 10.1016/S2238-7854(12)70004-2 Search in Google Scholar

Sandeep, C., Marzulli, V., Cafaro, F., Senetakis, K., & Pöschel, T. (2019). Micromechanical behavior of DNA-1A lunar regolith simulant in comparison to Ottawa sand. Journal of Geophysical Research: Solid Earth, 124(8), 8077–8100. SandeepC. MarzulliV. CafaroF. SenetakisK. PöschelT. 2019 Micromechanical behavior of DNA-1A lunar regolith simulant in comparison to Ottawa sand Journal of Geophysical Research: Solid Earth 124 8 8077 8100 10.1029/2019JB017589 Search in Google Scholar

Sandeep, C., & Senetakis, K. (2019). An experimental investigation of the microslip displacement of geological materials. Computers and Geotechnics, 107, 55–67. SandeepC. SenetakisK. 2019 An experimental investigation of the microslip displacement of geological materials Computers and Geotechnics 107 55 67 10.1016/j.compgeo.2018.11.013 Search in Google Scholar

Senetakis, K., Coop, M. R., & Todisco, M. C. (2013). The inter-particle coefficient of friction at the contacts of Leighton Buzzard sand quartz minerals. Soils and Foundations, 53(5), 746–755. SenetakisK. CoopM. R. TodiscoM. C. 2013 The inter-particle coefficient of friction at the contacts of Leighton Buzzard sand quartz minerals Soils and Foundations 53 5 746 755 10.1016/j.sandf.2013.08.012 Search in Google Scholar

Skinner, A. (1969). A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles. Geotechnique, 19(1), 150–157. SkinnerA. 1969 A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles Geotechnique 19 1 150 157 10.1680/geot.1969.19.1.150 Search in Google Scholar

Soga, K., & O’SULLIVAN, C. (2010). Modeling of geomaterials behavior. Soils and foundations, 50(6), 861–875. SogaK. O’SULLIVANC. 2010 Modeling of geomaterials behavior Soils and foundations 50 6 861 875 10.3208/sandf.50.861 Search in Google Scholar

Suiker, A. S., & Fleck, N. A. (2004). Frictional collapse of granular assemblies. J. Appl. Mech., 71(3), 350–358. SuikerA. S. FleckN. A. 2004 Frictional collapse of granular assemblies J. Appl. Mech. 71 3 350 358 10.1115/1.1753266 Search in Google Scholar

Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1), 43–53. ThorntonC. 2000 Numerical simulations of deviatoric shear deformation of granular media Géotechnique 50 1 43 53 10.1680/geot.2000.50.1.43 Search in Google Scholar

Ulusay, R., & Karakul, H. (2016). Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing. Bulletin of Engineering Geology and the Environment, 75(4), 1683–1699. UlusayR. KarakulH. 2016 Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing Bulletin of Engineering Geology and the Environment 75 4 1683 1699 10.1007/s10064-015-0828-4 Search in Google Scholar

Uygar, E., & Doven, A. G. (2006). Monotonic and cyclic oedometer tests on sand at high stress levels. Granular Matter, 8(1), 19–26. UygarE. DovenA. G. 2006 Monotonic and cyclic oedometer tests on sand at high stress levels Granular Matter 8 1 19 26 10.1007/s10035-005-0216-z Search in Google Scholar

Wasantha, P. L., & Ranjith, P. G. (2014). Water-weakening behavior of Hawkesbury sandstone in brittle regime. Engineering Geology, 178, 91–101. WasanthaP. L. RanjithP. G. 2014 Water-weakening behavior of Hawkesbury sandstone in brittle regime Engineering Geology 178 91 101 10.1016/j.enggeo.2014.05.015 Search in Google Scholar

Wils, L., Van Impe, P., & Haegeman, W. (2015). One-dimensional compression of a crushable sand in dry and wet conditions. 3rd International Symposium on Geomechanics from Micro to Macro, WilsL. Van ImpeP. HaegemanW. 2015 One-dimensional compression of a crushable sand in dry and wet conditions 3rd International Symposium on Geomechanics from Micro to Macro 10.1201/b17395-254 Search in Google Scholar

Wong, L. N. Y., Maruvanchery, V., & Liu, G. (2016). Water effects on rock strength and stiffness degradation. Acta Geotechnica, 11(4), 713–737. WongL. N. Y. MaruvancheryV. LiuG. 2016 Water effects on rock strength and stiffness degradation Acta Geotechnica 11 4 713 737 10.1007/s11440-015-0407-7 Search in Google Scholar

Yimsiri, S., & Soga, K. (2010). DEM analysis of soil fabric effects on behaviour of sand. Géotechnique, 60(6), 483–495. YimsiriS. SogaK. 2010 DEM analysis of soil fabric effects on behaviour of sand Géotechnique 60 6 483 495 10.1680/geot.2010.60.6.483 Search in Google Scholar

Zhao, C., Niu, J., Zhang, Q., Zhao, C., & Zhou, Y. (2019). Failure characteristics of rock-like materials with single flaws under uniaxial compression. Bulletin of Engineering Geology and the Environment, 78(1), 593–603. ZhaoC. NiuJ. ZhangQ. ZhaoC. ZhouY. 2019 Failure characteristics of rock-like materials with single flaws under uniaxial compression Bulletin of Engineering Geology and the Environment 78 1 593 603 10.1007/s10064-018-1379-2 Search in Google Scholar

Zhou, Z., Cai, X., Cao, W., Li, X., & Xiong, C. (2016). Influence of water content on mechanical properties of rock in both saturation and drying processes. Rock Mechanics and Rock Engineering, 49(8), 3009–3025. ZhouZ. CaiX. CaoW. LiX. XiongC. 2016 Influence of water content on mechanical properties of rock in both saturation and drying processes Rock Mechanics and Rock Engineering 49 8 3009 3025 10.1007/s00603-016-0987-z Search in Google Scholar

eISSN:
2083-831X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics