[
Aas, D. G. (2008). In: H. Weisgerber, A. Roloff, U. Lang, B. Stimm (Eds.), Enzyklopädie Der Holzgewächse, Handbuch und Atlas der Dendrologie. Wiley-VCH, Weinheim, pp. 1-16. https://doi.org/10.1002/9783527678518.ehg2000020
]Search in Google Scholar
[
Adams, J. P., Rousseau, R. J., Adams, J. C. (2007). Genetic Performance and Maximizing Genetic Gain Through Direct and Indirect Selection in Cherrybark Oak. Silvae Genetica, 56(1–6), 80–87. https://doi.org/10.1515/sg-2007-0012
]Search in Google Scholar
[
Aitken, S. N., Bemmels, J. B. (2016). Time to get moving: Assisted gene flow of forest trees. Evolutionary Applications, 9(1), 271–290. https://doi.org/10.1111/eva.12293
]Search in Google Scholar
[
Alberto, F., Bouffier, L., Louvet, J.-M., Lamy, J.-B., Delzon, S., Kremer, A. (2011). Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient: Variation of phenological traits in Q. petraea. Journal of Evolutionary Biology, 24(7), 1442–1454. https://doi.org/10.1111/j.1420-9101.2011.02277.x
]Search in Google Scholar
[
Baliuckas, V., Pliura, A. (2003). Genetic Variation and Phenotypic Plasticity of Quercus robur Populations and Open-pollinated Families in Lithuania. Scandinavian Journal of Forest Research, 18(4), 105–319. https://doi.org/10.1080/02827580310005153
]Search in Google Scholar
[
Bußler, H. (2014). Käfer und Großschmetterlinge an der Traubeneiche.
]Search in Google Scholar
[
Campelo, F., Rubio-Cuadrado, Á., Montes, F., Colangelo, M., Valeriano, C., & Camarero, J. J. (2023). Growth phenology adjusts to seasonal changes in water availability in coexisting evergreen and deciduous mediterranean oaks. Forest Ecosystems, 10, 100134. https://doi.org/10.1016/j.fecs.2023.100134
]Search in Google Scholar
[
Dittmar, C., Fricke, W., Elling, W. (2006). Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. European Journal of Forest Research, 125(3), 249–259. https://doi.org/10.1007/s10342-005-0098-y
]Search in Google Scholar
[
Donohue, K. (2009). Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1520), 1059-1074. https://doi.org/10.1098/rstb.2008.0291
]Search in Google Scholar
[
Ducousso, A., Guyon, J., Krémer, A. (1996). Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt) Liebl). Annales Des Sciences Forestières, 53(2–3), 775–782. https://doi.org/10.1051/forest:19960253
]Search in Google Scholar
[
Fick, S. E., Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. [dataset]. https://doi.org/10.1002/joc.5086
]Search in Google Scholar
[
Firmat, C., Delzon, S., Louvet, J.-M., Parmentier, J., Kremer, A. (2017). Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. Journal of Evolutionary Biology, 30(12), 2116–2131. https://doi.org/10.1111/jeb.13185
]Search in Google Scholar
[
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves, S. and Heiberger, R. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing, 16(332), p.333 https://doi.org/10.32614/rj-2013-004
]Search in Google Scholar
[
Gafenco, I. M., Pleșca, B. I., Apostol, E. N., Șofletea, N. (2022). Spring and Autumn Phenology in Sessile Oak (Quercus petraea) Near the Eastern Limit of Its Distribution Range. Forests, 13(7), 1125. https://doi.org/10.3390/f13071125
]Search in Google Scholar
[
Gallinat, A. S., Primack, R. B., Wagner, D. L. (2015). Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 30(3), 169–176. https://doi.org/10.1016/j.tree.2015.01.004
]Search in Google Scholar
[
Gil-Pelegrín, E., Peguero-Pina, J. J., Sancho-Knapik, D. (Eds.). (2017). Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. (Vol. 7). Springer International Publishing. https://doi.org/10.1007/978-3-319-69099-5
]Search in Google Scholar
[
González-Rodríguez, V., Villar, R., Navarro-Cerrillo, R. M. (2011). Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecologica, 37(1), 1–9. https://doi.org/10.1016/j.actao.2010.10.006
]Search in Google Scholar
[
Grotehusmann, H., Schönfelder, E. (2011). Comparison of French and German sessile oak (Quercus petraea (Matt.) Liebl.) provenances. Silvae Genetica, 60(1–6), 186–196. https://doi.org/10.1515/sg-2011-0025
]Search in Google Scholar
[
Hagen-Thorn, A., Varnagiryte, I., Nihlgård, B., Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228(1–3), 33–39. https://doi.org/10.1016/j.foreco.2006.02.021
]Search in Google Scholar
[
Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207. https://doi.org/10.1038/nclimate1687
]Search in Google Scholar
[
Harper, J. L., Obeid, M. (1967). Influence of Seed Size and Depth of Sowing on the Establishment and Growth of Varieties of Fiber and Oil Seed Flax. Crop Science, 7(5), 527–532. https://doi.org/10.2135/cropsci1967.0011183X000700050036x
]Search in Google Scholar
[
Jablonski, E. (2014). Quercus. In B. Stimm, A. Roloff, U. M. Lang, H. Weisgerber (Eds.), Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie (pp. 1–24). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527678518.ehg2014003
]Search in Google Scholar
[
Jensen, J. S. (2000). Provenance Variation in Phenotypic Traits in Quercus robur and Quercus petraea in Danish Provenance Trials. Scandinavian Journal of Forest Research, 15(3), 297–308. https://doi.org/10.1080/028275800447922
]Search in Google Scholar
[
Jensen, J. S., Hansen, J. K. (2008). Geographical variation in phenology of Quercus petraea (Matt.) Liebl and Quercus robur L. oak grown in a greenhouse. Scandinavian Journal of Forest Research, 23(2), 179–188. https://doi.org/10.1080/02827580801995331
]Search in Google Scholar
[
Johnson, P. S., Shifley, S. R., Rogers, R., Dey, D. C., Kabrick, J. M. (2019). The ecology and silvi-culture of oaks (3rd edition). CABI.
]Search in Google Scholar
[
Keenan, R. J. (2015). Climate change impacts and adaptation in forest management: A review. Annals of Forest Science, 72(2), 145–167. https://doi.org/10.1007/s13595-014-0446-5
]Search in Google Scholar
[
Keskitalo, J., Bergquist, G., Gardeström, P., Jansson, S. (2005). A Cellular Timetable of Autumn Senescence. Plant Physiology, 139(4), 1635–1648. https://doi.org/10.1104/pp.105.066845
]Search in Google Scholar
[
Kleinschmit, J. (1993). Intraspecific variation of growth and adaptive traits in European oak species. Annales Des Sciences Forestières, 50(Supplement), 166s–185s. https://doi.org/10.1051/forest:19930716
]Search in Google Scholar
[
Kuser, J. E., Ching, K. K. (1980). Provenance Variation in Phenology and Cold Hardiness of Western Hemlock Seedlings. Forest Science, 26(3), 463–470. https://doi.org/10.1093/forestscience/26.3.463
]Search in Google Scholar
[
Landergott, U., Gugerli, F., Hoebee, S. E., Finkeldey, R., Holderegger, R. (2012). Effects of seed mass on seedling height and competition in European white oaks. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(10), 721-725. https://doi.org/10.1016/j.flora.2012.09.001
]Search in Google Scholar
[
Le Provost, G., Lalanne, C., Lesur, I., Louvet, J.-M., Delzon, S., Kremer, A., Labadie, K., Aury, J.- M., Da Silva, C., Moritz, T., & Plomion, C. (2023). Oak stands along an elevation gradient have different molecular strategies for regulating bud phenology. BMC Plant Biology, 23(1), 108. https://doi.org/10.1186/s12870-023-04069-2
]Search in Google Scholar
[
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023
]Search in Google Scholar
[
Modrow, T., Kuehne, C., Saha, S., Bauhus, J., Pyttel, P. L. (2020). Photosynthetic performance, height growth, and dominance of naturally regenerated sessile oak (Quercus petraea [Mattuschka] Liebl.) seedlings in small-scale canopy openings of varying sizes. European Journal of Forest Research, 139(1), 41–52. https://doi.org/10.1007/s10342-019-01238-7
]Search in Google Scholar
[
Morin, X., Roy, J., Sonié, L., Chuine, I. (2010). Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186(4), 900–910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
]Search in Google Scholar
[
Neophytou, C., Braun, A., Semizer-Cuming, D., Fussi, B., Mück, I., Schlosser, F., Seegmüller, S., Michiels, H.-G. (2020). Angepasste Eichen auf Reliktstandorten. Eine zukünftige Quelle für forstliches Vermehrungsgut? In: Liesebach, M. (Ed.) Forstpflanzenzüchtung für die Praxis: 6. Tagung der Sektion Forstgenetik/Forstpflanzenzüchtung vom 16. bis 18. September 2019 in Dresden; Tagungsband, Johann Heinrich von Thünen-Institut, pp. 37–48 https://doi.org/10.3220/REP1584625360000
]Search in Google Scholar
[
Neophytou, C., Semizer-Cuming, D., Michiels, H.-G., Kremer, A., Jansen, S., Fussi, B. (2024). Relict stands of Central European oaks: Unravelling autochthony and genetic structure based on a multi-population study. Forest Ecology and Management, 551, 121554. https://doi.org/10.1016/j.foreco.2023.121554
]Search in Google Scholar
[
Ningre, F., Colin, F. (2007). Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Annals of Forest Science, 64(1), 79–86. https://doi.org/10.1051/forest:2006091
]Search in Google Scholar
[
R Core Team. (2022). R: A language and Environment for Statistical Computing. https://www.R-project.org/
]Search in Google Scholar
[
Ramírez-Valiente, J. A., Valladares, F., Gil, L., Aranda, I. (2009). Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). Forest Ecology and Management, 257(8), 1676-1683. https://doi.org/10.1016/j.foreco.2009.01.024
]Search in Google Scholar
[
Roach, D. A., Wulff, R. D. (1987). Maternal effects in plants. Annual Review of Ecology and Systematics, 209-235
]Search in Google Scholar
[
Sáenz‐Romero, C., Lamy, J. B., Ducousso, A., Musch, B., Ehrenmann, F., Delzon, S., Cavers, S., Chałupka, W., Dağdaş, S., Hansen, J. K., Lee, S. J., Liesebach, M., Rau, H.-M., Psomas, A., Schneck, V., Steiner, W., Zimmermann, N. E., Kremer, A. (2017). Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology, 23(7), 2831-2847. https://doi.org/10.1111/gcb.13576
]Search in Google Scholar
[
Sang, Z., Hamann, A., Aitken, S. N. (2021). Assisted migration poleward rather than upward in elevation minimizes frost risks in plantations. Climate Risk Management, 34, 100380. https://doi.org/10.1016/j.crm.2021.100380
]Search in Google Scholar
[
Schüler, S., Liesebach, M., von Wuehlisch, G. (2012). Genetische Variation und Plastizität des Blattaustriebs von Herkünften der Rot-Buche.
]Search in Google Scholar
[
Schwinning, S., Lortie, C. J., Esque, T. C., DeFalco, L. A. (2022). What common‐garden experiments tell us about climate responses in plants. Journal of Ecology, 110(5), 986–996. https://doi.org/10.1111/1365-2745.13887
]Search in Google Scholar
[
Stanton, M. L. (1984). Developmental and Genetic Sources of Seed Weight Variation in Raphanus raphanistrum L. (Brassicaceae). American Journal of Botany, 71(8), 1090–1098.
]Search in Google Scholar
[
Stanturf, J. A., Ivetić, V., Kasten Dumroese, R. (2024). Framing recent advances in assisted migration of Trees: A Special Issue. Forest Ecology and Management, 551, 121552. https://doi.org/10.1016/j.foreco.2023.121552
]Search in Google Scholar
[
Torres-Ruiz, J. M., Kremer, A., Carins Murphy, M. R., Brodribb, T., Lamarque, L. J., Truffaut, L., Bonne, F., Ducousso, A., & Delzon, S. (2019). Genetic differentiation in functional traits among European sessile oak populations. Tree Physiology, 39(10), 1736–1749. https://doi.org/10.1093/treephys/tpz090
]Search in Google Scholar
[
Tripathi, R. S., Khan, M. L. (1990). Effects of Seed Weight and Microsite Characteristics on Germination and Seedling Fitness in Two Species of Quercus in a Subtropical Wet Hill Forest. Oikos, 57(3), 289. https://doi.org/10.2307/3565956
]Search in Google Scholar
[
Van Dooren, T. J. M., Hoyle, R. B., Plaistow, S. J. (2016). Maternal effects. In: Kliman R, ed. The encyclopedia of evolutionary biology. Oxford, UK: Academic Press, 446–452. https://doi.org/10.1016/B978-0-12-800049-6.00051-2
]Search in Google Scholar
[
Vitasse, Y., Delzon, S., Bresson, C. C., Michalet, R., Kremer, A. (2009). Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 39(7), 1259–1269. https://doi.org/10.1139/X09-054
]Search in Google Scholar
[
Vivas, M., Wingfield, M. J., Slippers, B. (2020). Maternal effects should be considered in the establishment of forestry plantations. Forest Ecology and Management, 460, 117909. https://doi.org/10.1016/j.foreco.2020.117909
]Search in Google Scholar
[
Wunderlich, L., Forreiter, L., Lingenfelder, M., Konnert, M., Neophytou, C. (2017). Macht die Herkunft den Unterschied? Ergebnisse der Nachkommenschaftsprüfungen von Stieleiche (Quercus robur L.) und Fichte (Picea abies (L.) KARST.) in Baden-Württemberg. ALLGEMEINE FORST UND JAGDZEITUNG, 188(9–10), 153–167. https://doi.org/10.23765/afjz0002010
]Search in Google Scholar