Accès libre

Variation in seed traits, leaf phenology and growth performance among sessile oak provenances from Baden-Württemberg and Alsace

, , , ,  et   
24 mai 2025
À propos de cet article

Citez
Télécharger la couverture

Aas, D. G. (2008). In: H. Weisgerber, A. Roloff, U. Lang, B. Stimm (Eds.), Enzyklopädie Der Holzgewächse, Handbuch und Atlas der Dendrologie. Wiley-VCH, Weinheim, pp. 1-16. https://doi.org/10.1002/9783527678518.ehg2000020 Search in Google Scholar

Adams, J. P., Rousseau, R. J., Adams, J. C. (2007). Genetic Performance and Maximizing Genetic Gain Through Direct and Indirect Selection in Cherrybark Oak. Silvae Genetica, 56(1–6), 80–87. https://doi.org/10.1515/sg-2007-0012 Search in Google Scholar

Aitken, S. N., Bemmels, J. B. (2016). Time to get moving: Assisted gene flow of forest trees. Evolutionary Applications, 9(1), 271–290. https://doi.org/10.1111/eva.12293 Search in Google Scholar

Alberto, F., Bouffier, L., Louvet, J.-M., Lamy, J.-B., Delzon, S., Kremer, A. (2011). Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient: Variation of phenological traits in Q. petraea. Journal of Evolutionary Biology, 24(7), 1442–1454. https://doi.org/10.1111/j.1420-9101.2011.02277.x Search in Google Scholar

Baliuckas, V., Pliura, A. (2003). Genetic Variation and Phenotypic Plasticity of Quercus robur Populations and Open-pollinated Families in Lithuania. Scandinavian Journal of Forest Research, 18(4), 105–319. https://doi.org/10.1080/02827580310005153 Search in Google Scholar

Bußler, H. (2014). Käfer und Großschmetterlinge an der Traubeneiche. Search in Google Scholar

Campelo, F., Rubio-Cuadrado, Á., Montes, F., Colangelo, M., Valeriano, C., & Camarero, J. J. (2023). Growth phenology adjusts to seasonal changes in water availability in coexisting evergreen and deciduous mediterranean oaks. Forest Ecosystems, 10, 100134. https://doi.org/10.1016/j.fecs.2023.100134 Search in Google Scholar

Dittmar, C., Fricke, W., Elling, W. (2006). Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. European Journal of Forest Research, 125(3), 249–259. https://doi.org/10.1007/s10342-005-0098-y Search in Google Scholar

Donohue, K. (2009). Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1520), 1059-1074. https://doi.org/10.1098/rstb.2008.0291 Search in Google Scholar

Ducousso, A., Guyon, J., Krémer, A. (1996). Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt) Liebl). Annales Des Sciences Forestières, 53(2–3), 775–782. https://doi.org/10.1051/forest:19960253 Search in Google Scholar

Fick, S. E., Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. [dataset]. https://doi.org/10.1002/joc.5086 Search in Google Scholar

Firmat, C., Delzon, S., Louvet, J.-M., Parmentier, J., Kremer, A. (2017). Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. Journal of Evolutionary Biology, 30(12), 2116–2131. https://doi.org/10.1111/jeb.13185 Search in Google Scholar

Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves, S. and Heiberger, R. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing, 16(332), p.333 https://doi.org/10.32614/rj-2013-004 Search in Google Scholar

Gafenco, I. M., Pleșca, B. I., Apostol, E. N., Șofletea, N. (2022). Spring and Autumn Phenology in Sessile Oak (Quercus petraea) Near the Eastern Limit of Its Distribution Range. Forests, 13(7), 1125. https://doi.org/10.3390/f13071125 Search in Google Scholar

Gallinat, A. S., Primack, R. B., Wagner, D. L. (2015). Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 30(3), 169–176. https://doi.org/10.1016/j.tree.2015.01.004 Search in Google Scholar

Gil-Pelegrín, E., Peguero-Pina, J. J., Sancho-Knapik, D. (Eds.). (2017). Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. (Vol. 7). Springer International Publishing. https://doi.org/10.1007/978-3-319-69099-5 Search in Google Scholar

González-Rodríguez, V., Villar, R., Navarro-Cerrillo, R. M. (2011). Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecologica, 37(1), 1–9. https://doi.org/10.1016/j.actao.2010.10.006 Search in Google Scholar

Grotehusmann, H., Schönfelder, E. (2011). Comparison of French and German sessile oak (Quercus petraea (Matt.) Liebl.) provenances. Silvae Genetica, 60(1–6), 186–196. https://doi.org/10.1515/sg-2011-0025 Search in Google Scholar

Hagen-Thorn, A., Varnagiryte, I., Nihlgård, B., Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228(1–3), 33–39. https://doi.org/10.1016/j.foreco.2006.02.021 Search in Google Scholar

Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207. https://doi.org/10.1038/nclimate1687 Search in Google Scholar

Harper, J. L., Obeid, M. (1967). Influence of Seed Size and Depth of Sowing on the Establishment and Growth of Varieties of Fiber and Oil Seed Flax. Crop Science, 7(5), 527–532. https://doi.org/10.2135/cropsci1967.0011183X000700050036x Search in Google Scholar

Jablonski, E. (2014). Quercus. In B. Stimm, A. Roloff, U. M. Lang, H. Weisgerber (Eds.), Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie (pp. 1–24). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527678518.ehg2014003 Search in Google Scholar

Jensen, J. S. (2000). Provenance Variation in Phenotypic Traits in Quercus robur and Quercus petraea in Danish Provenance Trials. Scandinavian Journal of Forest Research, 15(3), 297–308. https://doi.org/10.1080/028275800447922 Search in Google Scholar

Jensen, J. S., Hansen, J. K. (2008). Geographical variation in phenology of Quercus petraea (Matt.) Liebl and Quercus robur L. oak grown in a greenhouse. Scandinavian Journal of Forest Research, 23(2), 179–188. https://doi.org/10.1080/02827580801995331 Search in Google Scholar

Johnson, P. S., Shifley, S. R., Rogers, R., Dey, D. C., Kabrick, J. M. (2019). The ecology and silvi-culture of oaks (3rd edition). CABI. Search in Google Scholar

Keenan, R. J. (2015). Climate change impacts and adaptation in forest management: A review. Annals of Forest Science, 72(2), 145–167. https://doi.org/10.1007/s13595-014-0446-5 Search in Google Scholar

Keskitalo, J., Bergquist, G., Gardeström, P., Jansson, S. (2005). A Cellular Timetable of Autumn Senescence. Plant Physiology, 139(4), 1635–1648. https://doi.org/10.1104/pp.105.066845 Search in Google Scholar

Kleinschmit, J. (1993). Intraspecific variation of growth and adaptive traits in European oak species. Annales Des Sciences Forestières, 50(Supplement), 166s–185s. https://doi.org/10.1051/forest:19930716 Search in Google Scholar

Kuser, J. E., Ching, K. K. (1980). Provenance Variation in Phenology and Cold Hardiness of Western Hemlock Seedlings. Forest Science, 26(3), 463–470. https://doi.org/10.1093/forestscience/26.3.463 Search in Google Scholar

Landergott, U., Gugerli, F., Hoebee, S. E., Finkeldey, R., Holderegger, R. (2012). Effects of seed mass on seedling height and competition in European white oaks. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(10), 721-725. https://doi.org/10.1016/j.flora.2012.09.001 Search in Google Scholar

Le Provost, G., Lalanne, C., Lesur, I., Louvet, J.-M., Delzon, S., Kremer, A., Labadie, K., Aury, J.- M., Da Silva, C., Moritz, T., & Plomion, C. (2023). Oak stands along an elevation gradient have different molecular strategies for regulating bud phenology. BMC Plant Biology, 23(1), 108. https://doi.org/10.1186/s12870-023-04069-2 Search in Google Scholar

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023 Search in Google Scholar

Modrow, T., Kuehne, C., Saha, S., Bauhus, J., Pyttel, P. L. (2020). Photosynthetic performance, height growth, and dominance of naturally regenerated sessile oak (Quercus petraea [Mattuschka] Liebl.) seedlings in small-scale canopy openings of varying sizes. European Journal of Forest Research, 139(1), 41–52. https://doi.org/10.1007/s10342-019-01238-7 Search in Google Scholar

Morin, X., Roy, J., Sonié, L., Chuine, I. (2010). Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186(4), 900–910. https://doi.org/10.1111/j.1469-8137.2010.03252.x Search in Google Scholar

Neophytou, C., Braun, A., Semizer-Cuming, D., Fussi, B., Mück, I., Schlosser, F., Seegmüller, S., Michiels, H.-G. (2020). Angepasste Eichen auf Reliktstandorten. Eine zukünftige Quelle für forstliches Vermehrungsgut? In: Liesebach, M. (Ed.) Forstpflanzenzüchtung für die Praxis: 6. Tagung der Sektion Forstgenetik/Forstpflanzenzüchtung vom 16. bis 18. September 2019 in Dresden; Tagungsband, Johann Heinrich von Thünen-Institut, pp. 37–48 https://doi.org/10.3220/REP1584625360000 Search in Google Scholar

Neophytou, C., Semizer-Cuming, D., Michiels, H.-G., Kremer, A., Jansen, S., Fussi, B. (2024). Relict stands of Central European oaks: Unravelling autochthony and genetic structure based on a multi-population study. Forest Ecology and Management, 551, 121554. https://doi.org/10.1016/j.foreco.2023.121554 Search in Google Scholar

Ningre, F., Colin, F. (2007). Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Annals of Forest Science, 64(1), 79–86. https://doi.org/10.1051/forest:2006091 Search in Google Scholar

R Core Team. (2022). R: A language and Environment for Statistical Computing. https://www.R-project.org/ Search in Google Scholar

Ramírez-Valiente, J. A., Valladares, F., Gil, L., Aranda, I. (2009). Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). Forest Ecology and Management, 257(8), 1676-1683. https://doi.org/10.1016/j.foreco.2009.01.024 Search in Google Scholar

Roach, D. A., Wulff, R. D. (1987). Maternal effects in plants. Annual Review of Ecology and Systematics, 209-235 Search in Google Scholar

Sáenz‐Romero, C., Lamy, J. B., Ducousso, A., Musch, B., Ehrenmann, F., Delzon, S., Cavers, S., Chałupka, W., Dağdaş, S., Hansen, J. K., Lee, S. J., Liesebach, M., Rau, H.-M., Psomas, A., Schneck, V., Steiner, W., Zimmermann, N. E., Kremer, A. (2017). Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology, 23(7), 2831-2847. https://doi.org/10.1111/gcb.13576 Search in Google Scholar

Sang, Z., Hamann, A., Aitken, S. N. (2021). Assisted migration poleward rather than upward in elevation minimizes frost risks in plantations. Climate Risk Management, 34, 100380. https://doi.org/10.1016/j.crm.2021.100380 Search in Google Scholar

Schüler, S., Liesebach, M., von Wuehlisch, G. (2012). Genetische Variation und Plastizität des Blattaustriebs von Herkünften der Rot-Buche. Search in Google Scholar

Schwinning, S., Lortie, C. J., Esque, T. C., DeFalco, L. A. (2022). What common‐garden experiments tell us about climate responses in plants. Journal of Ecology, 110(5), 986–996. https://doi.org/10.1111/1365-2745.13887 Search in Google Scholar

Stanton, M. L. (1984). Developmental and Genetic Sources of Seed Weight Variation in Raphanus raphanistrum L. (Brassicaceae). American Journal of Botany, 71(8), 1090–1098. Search in Google Scholar

Stanturf, J. A., Ivetić, V., Kasten Dumroese, R. (2024). Framing recent advances in assisted migration of Trees: A Special Issue. Forest Ecology and Management, 551, 121552. https://doi.org/10.1016/j.foreco.2023.121552 Search in Google Scholar

Torres-Ruiz, J. M., Kremer, A., Carins Murphy, M. R., Brodribb, T., Lamarque, L. J., Truffaut, L., Bonne, F., Ducousso, A., & Delzon, S. (2019). Genetic differentiation in functional traits among European sessile oak populations. Tree Physiology, 39(10), 1736–1749. https://doi.org/10.1093/treephys/tpz090 Search in Google Scholar

Tripathi, R. S., Khan, M. L. (1990). Effects of Seed Weight and Microsite Characteristics on Germination and Seedling Fitness in Two Species of Quercus in a Subtropical Wet Hill Forest. Oikos, 57(3), 289. https://doi.org/10.2307/3565956 Search in Google Scholar

Van Dooren, T. J. M., Hoyle, R. B., Plaistow, S. J. (2016). Maternal effects. In: Kliman R, ed. The encyclopedia of evolutionary biology. Oxford, UK: Academic Press, 446–452. https://doi.org/10.1016/B978-0-12-800049-6.00051-2 Search in Google Scholar

Vitasse, Y., Delzon, S., Bresson, C. C., Michalet, R., Kremer, A. (2009). Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 39(7), 1259–1269. https://doi.org/10.1139/X09-054 Search in Google Scholar

Vivas, M., Wingfield, M. J., Slippers, B. (2020). Maternal effects should be considered in the establishment of forestry plantations. Forest Ecology and Management, 460, 117909. https://doi.org/10.1016/j.foreco.2020.117909 Search in Google Scholar

Wunderlich, L., Forreiter, L., Lingenfelder, M., Konnert, M., Neophytou, C. (2017). Macht die Herkunft den Unterschied? Ergebnisse der Nachkommenschaftsprüfungen von Stieleiche (Quercus robur L.) und Fichte (Picea abies (L.) KARST.) in Baden-Württemberg. ALLGEMEINE FORST UND JAGDZEITUNG, 188(9–10), 153–167. https://doi.org/10.23765/afjz0002010 Search in Google Scholar