1. bookTom 30 (2022): Zeszyt 2 (April 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2284-5623
Pierwsze wydanie
08 Aug 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

Clinical significance of serum HMGB1 in COPD and correlation with severity of airflow restriction and immune function

Data publikacji: 09 May 2022
Tom & Zeszyt: Tom 30 (2022) - Zeszyt 2 (April 2022)
Zakres stron: 173 - 181
Otrzymano: 23 Nov 2021
Przyjęty: 24 Feb 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2284-5623
Pierwsze wydanie
08 Aug 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

Background: To explore the serum HMGB1 levels in patients with smoking-induced chronic obstructive pulmonary disease (COPD) and the correlations with airflow restriction and immune function.

Methods: A total of 136 COPD patients were divided into mild, moderate and severe + extremely severe groups. Thirty-five healthy subjects were selected as control group. Serum HMGB1 levels were measured by ELISA, and the correlations with pulmonary and immune function indices were analyzed. Receiver operating characteristic (ROC) curve was plotted.

Results: PaO2, eosinophil count, FEV1/FVC, FEV1% pred, and IgA, IgM, IgG levels of COPD patients were lower than those of control group, and decreased with airflow restriction aggravation. PaCO2, leukocyte count, neutrophil percentage, modified British Medical Research Council (mMRC) scale and COPD Assessment Test (CAT) scores, D-Dimer (D-D), PCT, CRP and HMGB1 levels, myeloid dendritic cell (mDC) and plasmacytoid dendritic cell (pDC) counts, and mDCs/pDCs of COPD patients exceeded those of control group, and increased with airflow restriction aggravation (P<0.05). HMGB1 levels of COPD patients were negatively correlated with FEV1/FVC, FEV1% pred, IgA, IgM and IgG levels and positively correlated with mDC count, pDC count and mDCs/pDCs (P<0.0001). The area under ROC curve was 0.883, the optimal cutoff value was 3.63 ng/mL, and sensitivity and specificity were 86.7% and 85.9%, respectively.

Conclusions: Serum HMGB1 level in patients with smoking-induced COPD rises with airflow restriction aggravation and has significant correlations with the decline of pulmonary and immune functions, with high predictive value for COPD. HMGB1 is a potential biomarker for evaluating COPD progression.

Keywords

1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557-82. DOI: 10.1164/rccm.201701-0218PP10.1164/rccm.201701-0218PP28128970 Search in Google Scholar

2. Lopez AD, Murray CC. The global burden of disease, 1990-2020. Nat Med. 1998;4(11):1241-3. DOI: 10.1038/321810.1038/32189809543 Search in Google Scholar

3. Mannino DM, Higuchi K, Yu TC, Zhou H, Li Y, Tian H, et al. Economic burden of COPD in the presence of comorbidities. Chest. 2015;148(1):138-50. DOI: 10.1378/chest.14-243410.1378/chest.14-2434449387025675282 Search in Google Scholar

4. Beijers RJ, Gosker HR, Schols AM. Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr Opin Clin Nutr Metab Care. 2018;21(2):138-44. DOI: 10.1097/MCO.000000000000044410.1097/MCO.0000000000000444581123329200030 Search in Google Scholar

5. Gangemi S, Casciaro M, Trapani G, Quartuccio S, Navarra M, Pioggia G, et al. Association between HMGB1 and COPD: a systematic review. Mediat Inflamm 2015;21:164913. DOI: 10.1155/2015/16491310.1155/2015/164913469877826798204 Search in Google Scholar

6. Patel AR, Singh S, Khawaja I. Global initiative for chronic obstructive lung disease: the changes made. Cureus. 2019;11(6):e4985. DOI: 10.7759/cureus.498510.7759/cureus.4985670190031453045 Search in Google Scholar

7. Konietzke P, Jobst B, Wagner WL, Jarosch I, Graber R, Kenn K, et al. Similarities in the computed tomography appearance in α1-antitrypsin deficiency and smoking-related chronic obstructive pulmonary disease in a smoking collective. Respiration. 2018;96(3):231-39. DOI: 10.1159/00048917710.1159/00048917729940576 Search in Google Scholar

8. Nie XH, Jiang C, Li XM. Effect of smoking on pulmonary function of male patients with chronic obstructive pulmonary disease and their correlation. West China Med J. 2017;32:852-56. Search in Google Scholar

9. Guiedem E, Ikomey GM, Nkenfou C, Walter PY, Mesembe M, et al. Chronic obstructive pulmonary disease (COPD): neutrophils, macrophages and lymphocytes in patients with anterior tuberculosis compared to tobacco related COPD. BMC Res Notes. 2018;11(1):192. DOI: 10.1186/s13104-018-3309-610.1186/s13104-018-3309-6586976429580274 Search in Google Scholar

10. Lin FH, Zhang, HTan CM. The inflammatory response of elastin peptides in chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi. 2018;41(6):496-98. Search in Google Scholar

11. Ignatova GL, Antonov VN. Impact of vaccination on the course of bronchial and systemic inflammation in patients with COPD and CHD. Terapevt Arkh. 2017;89(3):29-33. DOI: 10.17116/terarkh201789329-3310.17116/terarkh201789329-3328378726 Search in Google Scholar

12. Cheng Y, Wang D, Wang B, Li H, Xiong J, Xu S, et al. HMGB1 translocation and release mediate cigarette smoke-induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway. Mol Biol Cell. 2017;28(1):201-09. DOI: 10.1091/mbc. e16-02-0126 Search in Google Scholar

13. Yates KP, Deppe R, Comerford M, Masuoka H, Cummings OW, Tonascia J, et al. Serum high mobility group box 1 protein levels are not associated with either histological severity or treatment response in children and adults with nonalcoholic fatty liver disease. Plos One. 2017;12(11):e0185813. DOI: 10.1371/journal. pone.0185813 Search in Google Scholar

14. Zhang XF, Qin Q, Geng WY, Jiang CW, Liu Y, Liu XL, et al. Electroacupuncture reduces hypothalamic and medullary expression of orexins and their receptors in a rat model of chronic obstructive pulmonary disease. Acupunct Med. 2018;36(5):312-18. DOI: 10.1136/acupmed-2017-01139110.1136/acupmed-2017-01139129669795 Search in Google Scholar

15. Abolhalaj M, Askmyr D, Sakellariou CA, Lundberg K, Greiff L, Lindstedt M. Profiling dendritic cell subsets in head and neck squamous cell tonsillar cancer and benign tonsils. Sci Rep 2018;8(1):8030. DOI: 10.1038/s41598-018-26193-y10.1038/s41598-018-26193-y596644229795118 Search in Google Scholar

16. Jiang YQ, Wu HY and Wen YQ. Detection and clinical significance of pathogen distribution and immune function in patients with AECOPD. J Parasit Biol. 2019;14:213-16. Search in Google Scholar

17. Huțanu A, Georgescu AM, Andrejkovits AV, Au W, Dobreanu M. Insights into Innate Immune Response Against SARS-CoV-2 Infection. Rev Romana Med Lab. 2021;29(3):255-69. DOI:10.2478/rrlm-2021-0022 DOI: 10.2478/rrlm-2021-002210.2478/rrlm-2021-0022 Search in Google Scholar

18. Wechsler ME. Current and emerging biologic therapies for asthma and COPD. Respir Care. 2018;63(6):699-707. DOI: 10.4187/respcare.0632210.4187/respcare.0632229794205 Search in Google Scholar

19. Xiong Y, Gao S, Luo G, Cheng G, Huang W, Jiang R, et al. Increased circulating autoantibodies levels of IgG, IgA, IgM against cytokeratin 18 and cytokeratin 19 in chronic obstructive pulmonary disease. Arch Med Res. 2017;48(1):79-87. DOI: 10.1016/j.arcmed.2017.01.00710.1016/j.arcmed.2017.01.00728577873 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo