1. bookTom 28 (2020): Zeszyt 1 (January 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2284-5623
Pierwsze wydanie
08 Aug 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

The direct deleterious effect of Th17 cells in the nervous system compartment in multiple sclerosis and experimental autoimmune encephalomyelitis: one possible link between neuroinflammation and neurodegeneration

Data publikacji: 07 Feb 2020
Tom & Zeszyt: Tom 28 (2020) - Zeszyt 1 (January 2020)
Zakres stron: 9 - 17
Otrzymano: 03 Dec 2019
Przyjęty: 02 Jan 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2284-5623
Pierwsze wydanie
08 Aug 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

The processes of demyelination and neurodegeneration in the central nervous system (CNS) of multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE) are secondary to numerous pathophysiological mechanisms. One of the main cellular players is the Th17 lymphocyte. One of the major functions described for Th17 cells is the upregulation of pro-inflammatory cytokines, such as IL-17 at the level of peripheral and CNS inflammation. This review will focus on the newly described and unexpected, direct role played by the Th17 cells in the CNS of MS patients and EAE models. Th17 and their main cytokine, IL-17, are actively involved in the onset and maintenance of the immune cascade in the CNS compartment as Th17 were found to achieve brain-homing potential. Direct interaction of myelin oligodendrocyte glycoprotein - specific Th17 with the neuronal cells firstly induces demyelination and secondly, extensive axonal damage. The Th17 cells promote an inflammatory B cell response beyond the BBB through the presence of infiltrating Th follicles. Due to their role in preventing remyelination and direct neurotoxic effect, Th17 cells might stand for an important connection between neuroinflammation and neurodegeneration in a devastating disease like MS. The Th17 cell populations have different mechanisms of provoking an autoimmune attack not only in the periphery but also in the CNS of MS patients.

Keywords

1. Cakina S, Ocak O, Ozkan A, Yucel S, Karaman HIO. Vitamin D receptor gene polymorphisms in multiple sclerosis disease: A case-control study. Rev Romana Med Lab. 2018;26(4):489-95. DOI: 10.2478/rrlm-2018-002810.2478/rrlm-2018-0028Search in Google Scholar

2. Arellano G, Acu-a E, Reyes LI, Ottum PA, De Sarno P, Villarroel L, et al. Th1 and Th17 Cells and Associated Cytokines Discriminate among Clinically Isolated Syndrome and Multiple Sclerosis Phenotypes. Front Immunol. 2017 Jun 30; 8:753. DOI: 10.3389/fimmu.2017.0075310.3389/fimmu.2017.00753549188728713377Search in Google Scholar

3. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from theT helper type 1 and 2 lineages. Nat Immunol. 2005 Nov;6(1):1123-32. DOI: 10.1038/ni125410.1038/ni125416200070Search in Google Scholar

4. Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, et al. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol. 2009; 65:499-509. DOI: 10.1002/ana.2165210.1002/ana.2165219475668Search in Google Scholar

5. Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci. 2013 Oct; 333:76-87. DOI: 10.1016/j.jns.2013.03.00210.1016/j.jns.2013.03.002372656923578791Search in Google Scholar

6. Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain. 2009 Dec;132:3329-41. DOI: 10.1093/brain/awp28910.1093/brain/awp28919933767Search in Google Scholar

7. Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011 Jul;74:1-13. DOI: 10.1111/j.1365-3083.2011.02536.x10.1111/j.1365-3083.2011.02536.x21338381Search in Google Scholar

8. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007 Oct;13:1173-5. DOI: 10.1038/nm165110.1038/nm1651511412517828272Search in Google Scholar

9. Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, et al. Evidence for a crosstalk between human neutrophils and Th17 cells. Blood 2010 Jan; 115 (2):335-43. DOI: 10.1182/blood-2009-04-21608510.1182/blood-2009-04-21608519890092Search in Google Scholar

10. Kostic M, Stojanovic I, Marjanovic G, Zivkovic N, Cvetanovic A. Deleterious versus protective autoimmunity in multiple sclerosis. Cell Immunol. 2015; 296:122-32. DOI: 10.1016/j.cellimm.2015.04.00610.1016/j.cellimm.2015.04.00625944389Search in Google Scholar

11. Chihara N. Dysregulated T cells in multiple sclerosis. Clin Exp Neuroimmunol. 2018; 9:20-29. DOI: 10.1111/cen3.1243810.1111/cen3.12438Search in Google Scholar

12. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009 May;10:514-23. DOI: 10.1038/ni.171610.1038/ni.171619305396Search in Google Scholar

13. Lutz SE, Smith JR, Kim DH, Olson CVL, Ellefsen K, Bates JM, et al. Caveolin1 is required for Th1 cell infiltration, but not tight junction remodeling, at the blood-brain barrier in autoimmune neuroinflammation. Cell Rep. 2017 Nov;21:2104-2117. DOI: 10.1016/j.celrep.2017.10.09410.1016/j.celrep.2017.10.094572869729166603Search in Google Scholar

14. Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Oct;79:408-416. DOI: 10.1016/j.pnpbp.2017.07.02310.1016/j.pnpbp.2017.07.02328760387Search in Google Scholar

15. Wojkowska DW, Szpakowski P, Ksiazek-Winiarek D, Leszczynski M, Glabinski A. Interactions between neutrophils, Th17 cells, and chemokines during the initiation of experimental model of multiple sclerosis. Mediators Inflamm. 2014;2014:590409. DOI: 10.1155/2014/59040910.1155/2014/590409394577224692851Search in Google Scholar

16. Siffrin V, Radbruch H, Glumm R, Niesner R, Paterka M, Herz J, et al. In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity. 2010 Sep;33(3):424-36. DOI: 10.1016/j.immuni.2010.08.01810.1016/j.immuni.2010.08.01820870176Search in Google Scholar

17. Haqqani AS, Stanimirovic DB. Intercellular interactomics of human brain endothelial cells and Th17 lymphocytes: a novel strategy for identifying therapeutic targets of CNS inflammation.Cardiovasc Psychiatry Neurol. 2011;2011:175364. DOI: 10.1155/2011/17536410.1155/2011/175364313096621755032Search in Google Scholar

18. Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F. Neurons as targets for T cells in the nervous system. Trends Neurosci. 2013; 36(6):315-24. DOI: 10.1016/j. tins.2013.01.008Search in Google Scholar

19. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007 Apr;130:1089-104. DOI: 10.1093/brain/awm03810.1093/brain/awm03817438020Search in Google Scholar

20. Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011 Sep;134:2755-71. DOI: 10.1093/brain/awr18210.1093/brain/awr18221840891Search in Google Scholar

21. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008 Feb;9:166-75. DOI: 10.1038/ni155210.1038/ni155218157131Search in Google Scholar

22. Ding Y, Li J, Wu Q, Yang P, Luo B, Xie S, et al. IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. J Immunol. 2013 Aug;191:1614-24. DOI: 10.4049/jimmunol.130047910.4049/jimmunol.1300479381939623858031Search in Google Scholar

23. Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE, Franz B, et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 2011 Dec;35(6):986-96. DOI: 10.1016/j.immuni.2011.10.01510.1016/j.immuni.2011.10.015342267822177922Search in Google Scholar

24. Wichner K, Stauss D, Kampfrath B, Krüger K, Müller G, Rehm A, et al. Dysregulated development of IL-17- and IL-21-expressing follicular helper T cells and increased germinal center formation in the absence of RORγt. FASEB J. 2016 Feb;30:761-74. DOI: 10.1096/fj.15-27400110.1096/fj.15-27400126499265Search in Google Scholar

25. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 2011 Jul 24;17: 975-82 DOI: 10.1038/nm.242510.1038/nm.2425318254221785433Search in Google Scholar

26. Chung Y, Tanaka S, Chu F, Nurieva R, Martinez GJ, Rawal G, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 2011;17: 983-88. DOI: 10.1038/nm.242610.1038/nm.2426315134021785430Search in Google Scholar

27. Linterman MA, Denton AE. Treg cells and CTLA-4: the ball and chain of the germinal center response. Immunity. 2014;41: 876-78. DOI: 10.1016/j.immuni.2014.12.00910.1016/j.immuni.2014.12.00925526300Search in Google Scholar

28. Dhaeze T, Peelen E, Hombrouck A. Circulating Follicular Regulatory T Cells Are Defective in Multiple Sclerosis. J Immunol. 2015;Aug 1;195(3):832-40. DOI: 10.4049/jimmunol.150075910.4049/jimmunol.150075926071562Search in Google Scholar

29. Quinn JL, Kumar G, Agasing A, Ko RM, Axtell RC. Role of TFH cells in promoting T Helper 17- induced neuroinflammation. Front Immunol. 2018 Feb; 9:382. DOI: 10.3389/fimmu.2018.0038210.3389/fimmu.2018.00382583508129535739Search in Google Scholar

30. Ireland SJ, Guzman AA, Frohman EM, Monson NL. B cells from relapsing remitting multiple sclerosis patients support neuro-antigen-specific Th17 responses. J Neuroimmunol. 2016 Feb; 291:46-53. DOI: 10.1016/j. jneuroim.2015.11.022Search in Google Scholar

31. Quinn JL, Axtell RC. Emerging role of follicular T Helper cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci. 2018 Oct;19(10). pii: E3233. DOI: 10.3390/ijms1910323310.3390/ijms19103233621412630347676Search in Google Scholar

32. Pikor NB , Astarita JL, Summers-Deluca L, Ludwin S, Turley SJ, Gommerman L. Integration of Th17-and Lymphotoxin-Derived Signals Initiates Meningeal-Resident Stromal Cell Remodeling to Propagate Neuroinflammation. Immunity. 2015 Dec; 43(6):1160-73. DOI: 10.1016/j.immuni.2015.11.01010.1016/j.immuni.2015.11.01026682987Search in Google Scholar

33. Balasa R, Maier S, Voidazan S, Hutanu A, Bajko Z, Motataianu A. An Intricate Mechanism of Action of Avonex in Relapsing Remitting Multiple Sclerosis Patients: Variation of Serum Titre of Interleukin-17A, Interleukin-10 and Transforming Growth Factor-β. CNS Neurol Disord Drug Targets. 2015;14(6):804-810. DOI: 10.2174/187152731466615031722544110.2174/187152731466615031722544125801840Search in Google Scholar

34. Balasa R, Huţanu A, Bajko Z, Feier C, Pascu I. Does the serum IL-17 titer influence the efficacy of interferon-β treatment in multiple sclerosis patients? Rev Romana Med Lab. 2011;19(4):381-9. DOI: 10.1177/135245851246849710.1177/135245851246849723207971Search in Google Scholar

35. Kang Z, Wang C, Zepp J, Wu L, Sun K, Zhao J, et al. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nat Neurosci. 2013 Oct;16(10):1401-8. DOI: 10.1038/nn.350510.1038/nn.3505410602523995070Search in Google Scholar

36. Hughes EG, Kang SH, Fukaya M, Bergles DE. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci. 2013 Jun;16(6): 668-676. DOI: 10.1038/nn.339010.1038/nn.3390380773823624515Search in Google Scholar

37. Dimou L, Gallo V. NG2-glia and their functions in the central nervous system. Glia 2015 Aug;63(8):1429-51. DOI: 10.1002/glia.2285910.1002/glia.22859447076826010717Search in Google Scholar

38. Zhang CJ, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018 Jul;9:2745. DOI: 10.1038/s41467-018-04974-310.1038/s41467-018-04974-3604810030013031Search in Google Scholar

39. Nishiyama A, Chang A, Trapp BD. NG2+glial cells: a novel glial cell population in the adult brain. J Neuropathol Exp Neurol. 1999 Nov;58:1113-24. DOI: 10.1097/00005072-199911000-0000110.1097/00005072-199911000-0000110560654Search in Google Scholar

40. Simon C, Gotz M, Dimou L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia. 2011 Jun; 59: 869-81. DOI: 10.1002/glia.2115610.1002/glia.2115621446038Search in Google Scholar

41. Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol. 2016 Jun; 4:71. DOI: 10.3389/fcell.2016.0007110.3389/fcell.2016.00071492316627551677Search in Google Scholar

42. Paintlia MK, Paintlia AS, Singh AK, Singh I. Synergistic activity of interleukin-17 and tumor necrosis factor-α enhances oxidative stress-mediated oligodendrocyte apoptosis. J Neurochem. 2011 Jan;116(4):508-21 DOI: 10.1111/j.1471-4159.2010.07136.x10.1111/j.1471-4159.2010.07136.x303346021143599Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo