1. bookTom 29 (2023): Zeszyt 1 (March 2023)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1898-0309
Pierwsze wydanie
30 Dec 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Accuracy of virtual rhinomanometry

Data publikacji: 18 Mar 2023
Tom & Zeszyt: Tom 29 (2023) - Zeszyt 1 (March 2023)
Zakres stron: 59 - 72
Otrzymano: 22 Sep 2022
Przyjęty: 20 Feb 2023
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1898-0309
Pierwsze wydanie
30 Dec 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Pallanch J. Physiology: Rhinomanometry. In: Nasal Physiology and Pathophysiology of Nasal Disorders. Springer-Verlag Berlin Heidelberg; 2013:331-344. https://doi.org/10.1007/978-3-642-37250-6_25 Search in Google Scholar

Homoth Medizin Elektronik. Rhino 4000-M. Published 2021. https://www.homoth.de/en/produkte-undloesungen/details/?id=4&titel=rhino-4000m Search in Google Scholar

Várady T, Martin RR, Cox J. Reverse engineering of geometric models—an introduction. Comput Des. 1997;29(4):255-268. https://doi.org/10.1016/S0010-4485(96)00054-1 Search in Google Scholar

Chrzan R, Urbanik A, Karbowski K, Moskała M, Polak J, Pyrich M. Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit. 2012;18(1):1-6. https://doi.org/10.12659/msm.882186356068622207125 Search in Google Scholar

Quadrio M, Pipolo C, Corti S, et al. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Oto-Rhino-Laryngology. 2014;271(9):2349-2354. https://doi.org/10.1007/s00405-013-2742-324100883 Search in Google Scholar

Faizal WM, Ghazali NNN, Khor CY, et al. Computational fluid dynamics modelling of human upper airway: A review. Comput Methods Programs Biomed. 2020;196:105627. https://doi.org/10.1016/j.cmpb.2020.105627731897632629222 Search in Google Scholar

Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.11110035533422 Search in Google Scholar

Corda JV, Shenoy BS, Ahmad KA, et al. Nasal airflow comparison in neonates, infant and adult nasal cavities using computational fluid dynamics. Comput Methods Programs Biomed. 2022;214:106538. https://doi.org/10.1016/j.cmpb.2021.10653834848078 Search in Google Scholar

Siu J, Inthavong K, Dong J, Shang Y, Douglas RG. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty – A computational fluid dynamics study. Clin Biomech. 2021;81:105237. https://doi.org/10.1016/j.clinbiomech.2020.10523733272646 Search in Google Scholar

Malik J, Otto BA, Zhao K. Computational Fluid Dynamics (CFD) Modeling as an Objective Analytical Tool for Nasal/Upper Airway Breathing. Curr Otorhinolaryngol Rep. 2022;10(1):116-120. https://doi.org/10.1007/s40136-021-00387-x Search in Google Scholar

Sagandykova NS, Fakhradiyev IR, Sajjala SR, et al. Patient-specific CFD simulation of aerodynamics for nasal pathology: a combined computational and experimental study. Comput Methods Biomech Biomed Eng Imaging Vis. 2021;9(5):470-479. https://doi.org/10.1080/21681163.2020.1858968 Search in Google Scholar

Mataraci F, Karimov U, Ozdemir IB, Yildirim D, Altindag A. CFD simulations and analyses of asymptomatic and symptomatic nasal airway obstructions. J Mech Med Biol. 2022;22(01):9-10. https://doi.org/10.1142/S0219519422500051 Search in Google Scholar

Aoyagi M, Oshima M, Oishi M, et al. Computational fluid dynamic analysis of the nasal respiratory function before and after postero-superior repositioning of the maxilla. PLoS One. 2022;17(4):1-20. https://doi.org/10.1371/journal.pone.0267677904954035482658 Search in Google Scholar

Huang R, Nedanoski A, Fletcher DF, et al. An automated segmentation framework for nasal computational fluid dynamics analysis in computed tomography. Comput Biol Med. 2019;115:103505. https://doi.org/10.1016/j.compbiomed.2019.10350531704374 Search in Google Scholar

Leventon ME, Grimson WEL, Faugeras O. Statistical shape influence in geodesic active contours. Biomed Imaging V - Proc 5th IEEE EMBS Int Summer Sch Biomed Imaging, SSBI 2002. 2002;1:316-323. https://doi.org/10.1109/SSBI.2002.1233989 Search in Google Scholar

Cootes T, Taylor C, Cooper D, Graham J. Active Shape Models-Their Training and Application. Comput Vis Image Underst. 1995;61(1):38-59. https://doi.org/10.1006/cviu.1995.1004 Search in Google Scholar

Keustermans W, Huysmans T, Schmelzer B, Sijbers J, Dirckx JJ. Matlab® toolbox for semi-automatic segmentation of the human nasal cavity based on active shape modeling. Comput Biol Med. 2019;105:27-38. https://doi.org/10.1016/j.compbiomed.2018.12.00830576918 Search in Google Scholar

Cherobin GB, Voegels RL, Gebrim EMMS, Garcia GJM. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS One. 2018;13(11). https://doi.org/10.1371/journal.pone.0207178623929830444909 Search in Google Scholar

Quadrio M, Pipolo C, Corti S, et al. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med Biol Eng Comput. 2016;54(2-3):411-419. https://doi.org/10.1007/s11517-015-1325-426059996 Search in Google Scholar

Inthavong K, Chetty A, Shang Y, Tu J. Examining mesh independence for flow dynamics in the human nasal cavity. Comput Biol Med. 2018;102:40-50. https://doi.org/10.1016/j.compbiomed.2018.09.01030245276 Search in Google Scholar

Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.11110035533422 Search in Google Scholar

Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: Overview of methods and challenges. J Biomech. 2013;46(2):299-306. https://doi.org/10.1016/j.jbiomech.2012.11.02223261244 Search in Google Scholar

Tretiakow D, Tesch K, Meyer-Szary J, Markiet K, Skorek A. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method. Eur Arch Oto-Rhino-Laryngology. 2020;1:3. https://doi.org/10.1007/s00405-020-06428-3805797233068172 Search in Google Scholar

Tretiakow D, Tesch K, Markiet K, Skorek A. Maxillary sinus aeration analysis using computational fluid dynamics. Sci Rep. 2022;12(1):1-12. https://doi.org/10.1038/s41598-022-14342-3920950135725799 Search in Google Scholar

Berger M, Giotakis AI, Pillei M, et al. Agreement between rhinomanometry and computed tomography-based computational fluid dynamics. Int J Comput Assist Radiol Surg. 2021;16(3):629-638. https://doi.org/10.1007/s11548-021-02332-1805223733677758 Search in Google Scholar

Garcia GJM, Hariri BM, Patel RG, Rhee JS. The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J Biomech. 2016;49(9):1670-1678. https://doi.org/10.1016/j.jbiomech.2016.03.051488578527083059 Search in Google Scholar

Schmidt N, Behrbohm H, Goubergrits L, Hildebrandt T, Brüning J. Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy. Int J Comput Assist Radiol Surg. 2022;17:1519-1529. https://doi.org/10.1007/s11548-022-02699-935821562 Search in Google Scholar

Kim DW, Chung SK, Na Y. Numerical study on the air conditioning characteristics of the human nasal cavity. Comput Biol Med. 2017;86:18-30. https://doi.org/10.1016/j.compbiomed.2017.04.01828499215 Search in Google Scholar

Shamohammadi H, Mehrabi S, Sadrizadeh S, Yaghoubi M, Abouali O. 3D numerical simulation of hot airflow in the human nasal cavity and trachea. Comput Biol Med. 2022;147:105702. https://doi.org/10.1016/j.compbiomed.2022.10570235772328 Search in Google Scholar

Li Q, Wang Z, Wang C, Wang H. Characterizing the respiratory-induced mechanical stimulation at the maxillary sinus fl oor following sinus augmentation by computational fluid dynamics. Front Bioeng Biotechnol. 2022;10:885130. https://doi.org/10.3389/fbioe.2022.885130936054535957638 Search in Google Scholar

Ormiskangas J, Valtonen O, Harju T, Rautiainen M, Kivekäs I. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery. Respir Physiol Neurobiol. 2022;302:103917. https://doi.org/10.1016/j.resp.2022.10391735500884 Search in Google Scholar

Elcner J, Lizal F, Jedelsky J, Jicha M, Chovancova M. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Biomech Model Mechanobiol. 2016;15(2):447-469. https://doi.org/10.1007/s10237-015-0701-126163996 Search in Google Scholar

Croce C, Fodil R, Durand M, et al. In Vitro Experiments and Numerical Simulations of Airflow in Realistic Nasal Airway Geometry. Ann Biomed Eng. 2006;34(6):997-1007. https://doi.org/10.1007/s10439-006-9094-816783655 Search in Google Scholar

Xu X, Wu J, Weng W, Fu M. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech Model Mechanobiol. 2020;19(5):1679-1695. https://doi.org/10.1007/s10237-020-01299-332026145 Search in Google Scholar

Van Strien J, Shrestha K, Gabriel S, et al. Pressure distribution and flow dynamics in a nasal airway using a scale resolving simulation. Phys Fluids. 2021;33:011907. https://doi.org/10.1063/5.0036095 Search in Google Scholar

ANSYS. Ansys Fluent Fluid Simulation Software Ansys Fluent Helps Make Better, Faster Decisions Through. Published 2021. https://www.ansys.com/products/fluids/ansys-fluent Search in Google Scholar

Siemens. Simcenter STAR-CCM +. Published 2021. https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html Search in Google Scholar

Burgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F. New CFD tools to evaluate nasal airflow. Eur Arch Oto-Rhino-Laryngology. 2017;274(8):3121-3128. https://doi.org/10.1007/s00405-017-4611-y28547013 Search in Google Scholar

Burgos MA, Sevilla García MA, Sanmiguel Rojas E, et al. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand®, Digbody® & Noseland®) to document objective flow parameters and optimise surgical results. Acta Otorrinolaringol Esp. 2018;69(3):125-133. https://doi.org/10.1016/j.otorri.2017.05.00528923473 Search in Google Scholar

Burgos MA, Sanmiguel-Rojas E, Singh N, Esteban-Ortega F. DigBody®: A new 3D modeling tool for nasal virtual surgery. Comput Biol Med. 2018;98:118-125. https://doi.org/10.1016/j.compbiomed.2018.05.01629787939 Search in Google Scholar

slicer.org. 3D Slicer Image Computing Platform. Published online 2022. https://www.slicer.org/ Search in Google Scholar

Weiner H. Fused Filament Fabrication – Simply Explained. All3DP. Published 2020. https://all3dp.com/2/fused-filament-fabrication-fff-3d-printing-simply-explained/ Search in Google Scholar

Fiberlogy. TDS-EASY-ABS-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/easy-abs/ Search in Google Scholar

Fiberlogy. TDS-BVOH-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/bvoh/ Search in Google Scholar

Interacoustics A/S. RhinoStream. Published 2010. http://www.categner.se/PDFblad/RhinoStreamleaflet.pdf Search in Google Scholar

Munson BR, Young D, Okiishi T. Fundamentals of Fluid Mechanics. John Wiley & Sons, Inc.; 2018. Search in Google Scholar

Karbowski K, Kopiczak B, Chrzan R, Gawlik J, Szaleniec J. Rhinomanometry vs. CFD - results of measurements and calculations. Mendeley Data, V1. Published online 2022. https://doi.org/10.17632/f4hb8dkzrc.1 Search in Google Scholar

Polecane artykuły z Trend MD