Pallanch J. Physiology: Rhinomanometry. In: Nasal Physiology and Pathophysiology of Nasal Disorders. Springer-Verlag Berlin Heidelberg; 2013:331-344. https://doi.org/10.1007/978-3-642-37250-6_25Search in Google Scholar
Homoth Medizin Elektronik. Rhino 4000-M. Published 2021. https://www.homoth.de/en/produkte-undloesungen/details/?id=4&titel=rhino-4000mSearch in Google Scholar
Várady T, Martin RR, Cox J. Reverse engineering of geometric models—an introduction. Comput Des. 1997;29(4):255-268. https://doi.org/10.1016/S0010-4485(96)00054-1Search in Google Scholar
Chrzan R, Urbanik A, Karbowski K, Moskała M, Polak J, Pyrich M. Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit. 2012;18(1):1-6. https://doi.org/10.12659/msm.882186356068622207125Search in Google Scholar
Quadrio M, Pipolo C, Corti S, et al. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Oto-Rhino-Laryngology. 2014;271(9):2349-2354. https://doi.org/10.1007/s00405-013-2742-324100883Search in Google Scholar
Faizal WM, Ghazali NNN, Khor CY, et al. Computational fluid dynamics modelling of human upper airway: A review. Comput Methods Programs Biomed. 2020;196:105627. https://doi.org/10.1016/j.cmpb.2020.105627731897632629222Search in Google Scholar
Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.11110035533422Search in Google Scholar
Corda JV, Shenoy BS, Ahmad KA, et al. Nasal airflow comparison in neonates, infant and adult nasal cavities using computational fluid dynamics. Comput Methods Programs Biomed. 2022;214:106538. https://doi.org/10.1016/j.cmpb.2021.10653834848078Search in Google Scholar
Siu J, Inthavong K, Dong J, Shang Y, Douglas RG. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty – A computational fluid dynamics study. Clin Biomech. 2021;81:105237. https://doi.org/10.1016/j.clinbiomech.2020.10523733272646Search in Google Scholar
Malik J, Otto BA, Zhao K. Computational Fluid Dynamics (CFD) Modeling as an Objective Analytical Tool for Nasal/Upper Airway Breathing. Curr Otorhinolaryngol Rep. 2022;10(1):116-120. https://doi.org/10.1007/s40136-021-00387-xSearch in Google Scholar
Sagandykova NS, Fakhradiyev IR, Sajjala SR, et al. Patient-specific CFD simulation of aerodynamics for nasal pathology: a combined computational and experimental study. Comput Methods Biomech Biomed Eng Imaging Vis. 2021;9(5):470-479. https://doi.org/10.1080/21681163.2020.1858968Search in Google Scholar
Mataraci F, Karimov U, Ozdemir IB, Yildirim D, Altindag A. CFD simulations and analyses of asymptomatic and symptomatic nasal airway obstructions. J Mech Med Biol. 2022;22(01):9-10. https://doi.org/10.1142/S0219519422500051Search in Google Scholar
Aoyagi M, Oshima M, Oishi M, et al. Computational fluid dynamic analysis of the nasal respiratory function before and after postero-superior repositioning of the maxilla. PLoS One. 2022;17(4):1-20. https://doi.org/10.1371/journal.pone.0267677904954035482658Search in Google Scholar
Huang R, Nedanoski A, Fletcher DF, et al. An automated segmentation framework for nasal computational fluid dynamics analysis in computed tomography. Comput Biol Med. 2019;115:103505. https://doi.org/10.1016/j.compbiomed.2019.10350531704374Search in Google Scholar
Leventon ME, Grimson WEL, Faugeras O. Statistical shape influence in geodesic active contours. Biomed Imaging V - Proc 5th IEEE EMBS Int Summer Sch Biomed Imaging, SSBI 2002. 2002;1:316-323. https://doi.org/10.1109/SSBI.2002.1233989Search in Google Scholar
Cootes T, Taylor C, Cooper D, Graham J. Active Shape Models-Their Training and Application. Comput Vis Image Underst. 1995;61(1):38-59. https://doi.org/10.1006/cviu.1995.1004Search in Google Scholar
Keustermans W, Huysmans T, Schmelzer B, Sijbers J, Dirckx JJ. Matlab® toolbox for semi-automatic segmentation of the human nasal cavity based on active shape modeling. Comput Biol Med. 2019;105:27-38. https://doi.org/10.1016/j.compbiomed.2018.12.00830576918Search in Google Scholar
Cherobin GB, Voegels RL, Gebrim EMMS, Garcia GJM. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS One. 2018;13(11). https://doi.org/10.1371/journal.pone.0207178623929830444909Search in Google Scholar
Quadrio M, Pipolo C, Corti S, et al. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med Biol Eng Comput. 2016;54(2-3):411-419. https://doi.org/10.1007/s11517-015-1325-426059996Search in Google Scholar
Inthavong K, Chetty A, Shang Y, Tu J. Examining mesh independence for flow dynamics in the human nasal cavity. Comput Biol Med. 2018;102:40-50. https://doi.org/10.1016/j.compbiomed.2018.09.01030245276Search in Google Scholar
Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.11110035533422Search in Google Scholar
Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: Overview of methods and challenges. J Biomech. 2013;46(2):299-306. https://doi.org/10.1016/j.jbiomech.2012.11.02223261244Search in Google Scholar
Tretiakow D, Tesch K, Meyer-Szary J, Markiet K, Skorek A. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method. Eur Arch Oto-Rhino-Laryngology. 2020;1:3. https://doi.org/10.1007/s00405-020-06428-3805797233068172Search in Google Scholar
Tretiakow D, Tesch K, Markiet K, Skorek A. Maxillary sinus aeration analysis using computational fluid dynamics. Sci Rep. 2022;12(1):1-12. https://doi.org/10.1038/s41598-022-14342-3920950135725799Search in Google Scholar
Berger M, Giotakis AI, Pillei M, et al. Agreement between rhinomanometry and computed tomography-based computational fluid dynamics. Int J Comput Assist Radiol Surg. 2021;16(3):629-638. https://doi.org/10.1007/s11548-021-02332-1805223733677758Search in Google Scholar
Garcia GJM, Hariri BM, Patel RG, Rhee JS. The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J Biomech. 2016;49(9):1670-1678. https://doi.org/10.1016/j.jbiomech.2016.03.051488578527083059Search in Google Scholar
Schmidt N, Behrbohm H, Goubergrits L, Hildebrandt T, Brüning J. Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy. Int J Comput Assist Radiol Surg. 2022;17:1519-1529. https://doi.org/10.1007/s11548-022-02699-935821562Search in Google Scholar
Kim DW, Chung SK, Na Y. Numerical study on the air conditioning characteristics of the human nasal cavity. Comput Biol Med. 2017;86:18-30. https://doi.org/10.1016/j.compbiomed.2017.04.01828499215Search in Google Scholar
Shamohammadi H, Mehrabi S, Sadrizadeh S, Yaghoubi M, Abouali O. 3D numerical simulation of hot airflow in the human nasal cavity and trachea. Comput Biol Med. 2022;147:105702. https://doi.org/10.1016/j.compbiomed.2022.10570235772328Search in Google Scholar
Li Q, Wang Z, Wang C, Wang H. Characterizing the respiratory-induced mechanical stimulation at the maxillary sinus fl oor following sinus augmentation by computational fluid dynamics. Front Bioeng Biotechnol. 2022;10:885130. https://doi.org/10.3389/fbioe.2022.885130936054535957638Search in Google Scholar
Ormiskangas J, Valtonen O, Harju T, Rautiainen M, Kivekäs I. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery. Respir Physiol Neurobiol. 2022;302:103917. https://doi.org/10.1016/j.resp.2022.10391735500884Search in Google Scholar
Elcner J, Lizal F, Jedelsky J, Jicha M, Chovancova M. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Biomech Model Mechanobiol. 2016;15(2):447-469. https://doi.org/10.1007/s10237-015-0701-126163996Search in Google Scholar
Croce C, Fodil R, Durand M, et al. In Vitro Experiments and Numerical Simulations of Airflow in Realistic Nasal Airway Geometry. Ann Biomed Eng. 2006;34(6):997-1007. https://doi.org/10.1007/s10439-006-9094-816783655Search in Google Scholar
Xu X, Wu J, Weng W, Fu M. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech Model Mechanobiol. 2020;19(5):1679-1695. https://doi.org/10.1007/s10237-020-01299-332026145Search in Google Scholar
Van Strien J, Shrestha K, Gabriel S, et al. Pressure distribution and flow dynamics in a nasal airway using a scale resolving simulation. Phys Fluids. 2021;33:011907. https://doi.org/10.1063/5.0036095Search in Google Scholar
ANSYS. Ansys Fluent Fluid Simulation Software Ansys Fluent Helps Make Better, Faster Decisions Through. Published 2021. https://www.ansys.com/products/fluids/ansys-fluentSearch in Google Scholar
Siemens. Simcenter STAR-CCM +. Published 2021. https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.htmlSearch in Google Scholar
Burgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F. New CFD tools to evaluate nasal airflow. Eur Arch Oto-Rhino-Laryngology. 2017;274(8):3121-3128. https://doi.org/10.1007/s00405-017-4611-y28547013Search in Google Scholar
Burgos MA, Sevilla García MA, Sanmiguel Rojas E, et al. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand®, Digbody® & Noseland®) to document objective flow parameters and optimise surgical results. Acta Otorrinolaringol Esp. 2018;69(3):125-133. https://doi.org/10.1016/j.otorri.2017.05.00528923473Search in Google Scholar
Burgos MA, Sanmiguel-Rojas E, Singh N, Esteban-Ortega F. DigBody®: A new 3D modeling tool for nasal virtual surgery. Comput Biol Med. 2018;98:118-125. https://doi.org/10.1016/j.compbiomed.2018.05.01629787939Search in Google Scholar
slicer.org. 3D Slicer Image Computing Platform. Published online 2022. https://www.slicer.org/Search in Google Scholar
Weiner H. Fused Filament Fabrication – Simply Explained. All3DP. Published 2020. https://all3dp.com/2/fused-filament-fabrication-fff-3d-printing-simply-explained/Search in Google Scholar
Fiberlogy. TDS-EASY-ABS-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/easy-abs/Search in Google Scholar
Fiberlogy. TDS-BVOH-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/bvoh/Search in Google Scholar
Interacoustics A/S. RhinoStream. Published 2010. http://www.categner.se/PDFblad/RhinoStreamleaflet.pdfSearch in Google Scholar
Munson BR, Young D, Okiishi T. Fundamentals of Fluid Mechanics. John Wiley & Sons, Inc.; 2018.Search in Google Scholar
Karbowski K, Kopiczak B, Chrzan R, Gawlik J, Szaleniec J. Rhinomanometry vs. CFD - results of measurements and calculations. Mendeley Data, V1. Published online 2022. https://doi.org/10.17632/f4hb8dkzrc.1Search in Google Scholar