Chaudhari, Ch., Sato, K., Ikeda, Y., Terada, K., Abe, N. & Nagaoka, K. (2021). One-pot synthesis of cyclohexylamine and N-aryl pyrroles via hydrogenation of nitroarenes over the Pd0.5Ru0.5-PVP catalyst. New. J. Chem. 45, 9743–9746. DOI: 10.1039/D1NJ00922B.Otwórz DOISearch in Google Scholar
Araki, S., Nakanishi, K., Tanaka, A. & Kominami, H. (2020). A ruthenium and palladium bimetallic system superior to a rhodium co-catalyst for TiO2-photocatalyzed ring hydrogenation of aniline to cyclohexylamine. J. Catal. 389, 212–217. DOI: 10.1016/j.jcat.2020.05.035.Otwórz DOISearch in Google Scholar
Ásgeirsson, B., Markússon, S., Hlynsdóttir, S.S., Hel-land, R. & Hjörleifsson, J.G. (2020). X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine. Biochem. Biophys. Rep. 24, 100830–100840. DOI: 10.1016/j.bbrep.2020.100830.Otwórz DOISearch in Google Scholar
Ranjbar, S., Soltanabadi, A. & Fakhri, Z. (2016). Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine. J. Chem. Eng. Data. 61(9), 3077–3089. DOI: 10.1021/acs.jced.6b00158.Otwórz DOISearch in Google Scholar
Senthil, K., Elangovan, K., Senthil, A. & Vinitha, G. (2021). Synthesis, growth, optical, mechanical, thermal, dielectric and third order nonlinear optical properties of cyclohexylamine derivative single crystals. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 247, 119063–119071. DOI: 10.1016/j.saa.2020.119063.Otwórz DOISearch in Google Scholar
Beepala, S.K., Mitta, H., Sk, H., Balla, P. & Komandur, V.R.Ch. (2022). Reductive amination of cyclohexanol/cyclohexanone to cyclohexylamine using SBA-15 supported copper catalysts. J. Indian. Chem. Soc. 99(6), 100451–100458. DOI: 10.1016/j.jics.2022.100451.Otwórz DOISearch in Google Scholar
Churro, R., Mendes, F., Araújo, P., Ribeiro, F., Peres, J. & Madeira, L.M. (2021). Statistical modelling of the amination reaction of cyclohexanol to produce cyclohexylamine over a commercial Ni-based catalyst. Chem. Eng. Res. Des. 170, 189–200. DOI: 10.1016/j.cherd.2021.03.029.Otwórz DOISearch in Google Scholar
Wen, J., You, K., Liu, X., Jian, J., Zhao, F., Liu, P., Ai, Q. & Luo, H. (2019). Highly selective one-step catalytic amination of cyclohexene to cyclohexylamine over HZSM-5. Catal. Commun. 127, 64–68. DOI: 10.1016/j.catcom.2019.05.007.Otwórz DOISearch in Google Scholar
Kowalewski, E., Krawczyk, M., Słowik, G., Kocik, J., Pieta, I.S., Chernyayeva, O., Lisovytskiy, D., Matus, K. & Śrębowata, A. (2021). Continuous-flow hydrogenation of nitrocyclohexane toward value-added products with CuZnAl hydrotalcite derived materials. Appl. Catal. A: Gen. 618, 118134–118145. DOI: 10.1016/j.apcata.2021.118134.Otwórz DOISearch in Google Scholar
Axet, M.R., Conejero, S. & Gerber, I.C. (2018). Ligand Effects on the Selective Hydrogenation of Nitrobenzene to Cyclohexylamine Using Ruthenium Nanoparticles as Catalysts. Appl. Nano. Mater. 1(10), 5885–5894. DOI: 10.1021/acsanm.8b01549.Otwórz DOISearch in Google Scholar
Li, X., Wang, Z., Mao, S., Chen, Y., Tang, M., Li, H. & Wang, Y. (2018). Insight into the Role of Additives in Catalytic Synthesis of Cyclohexyl-amine from Nitrobenzene. Chin. J. Chem. 36, 1191–1196. DOI: 10.1002/cjoc.201800380.Otwórz DOISearch in Google Scholar
Chatterjee, M., Sato, M., Kawanami, H., Ishizaka, T., Yokoyama, T. & Suzuki, T. (2011). Hydrogenation of aniline to cyclohexylamine in supercritical carbon dioxide: Significance of phase behaviour. Appl. Catal. A: Gen. 396, 186–193. DOI: 10.1016/j.apcata.2011.02.016.Otwórz DOISearch in Google Scholar
Greenfield, H. (1964). Hydrogenation of Aniline to Cyclohexylamine with Platinum Metal Catalysts. J. Org. Chem. 29(10), 3082–3084. DOI: 10.1021/jo01033a512.Otwórz DOISearch in Google Scholar
Yin, Z., Zeng, H., Wu, J., Zheng, S. & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a “Hydrogen-Borrowing” Strategy. ACS Catal. 6(10), 6546–6550. DOI: 10.1021/acscatal.6b02218.Otwórz DOISearch in Google Scholar
Valeš, R., Dvořák, B. & Krupka, J. (2021). Thermodynamic analysis on disproportionation process of cyclohexylamine to dicyclohexylamine. Pol. J. Chem. Tech. 23(3), 63–48. DOI: 10.2478/pjct-2021-0029.Otwórz DOISearch in Google Scholar
Hagihara, H. & Etsuro, E. (1965). The Catalytic Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 38(12), 2094–2100. DOI: 10.1246/bcsj.38.2094.Otwórz DOISearch in Google Scholar
Mink, G. & Horváth, L. (1998). Hydrogenation of aniline to cyclohexylamine on NaOH-promoted or lanthana supported nickel. React. Kinet. Catal. Lett. 65, 59–65. DOI: 10.1007/BF02475316.Otwórz DOISearch in Google Scholar
Roose, P., Eller, K., Henkes, E., Rossbacher, R. & Höke, H. (2015). Amines, Aliphatic. In Ullmann‘s Encyclopedia of Industrial Chemistry. Weinhelm, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.a02_001.pub2.Otwórz DOISearch in Google Scholar
Narayanan, K. & Unnikrishnan, R.P. (1997). Comparison of hydrogen adsorption and aniline hydrogenation over co-precipitated Co/Al2O3 and Ni/Al2O3 catalysts. J. Chem. Soc., Faraday Trans. 93(10), 2009–2013. DOI: 10.1039/A608074J.Otwórz DOISearch in Google Scholar
Nishimura, S., Yutaka, K., Yoshiharu, O. & Yoshio, F. (1971). The Ruthenium-Catalyzed Hydrogenation of Aromatic Amines Promoted by Lithium Hydroxide. Bull. Chem. Soc. Jpn. 44(1), 240–243. DOI: 10.1246/bcsj.44.240.Otwórz DOISearch in Google Scholar
Nishimura, S., Shu, T., Hara, T. & Takagi, Y. (1966). The Hydroxide-Blacks of Ruthenium and Rhodium as Catalysts for the Hydrogenation of Organic Compounds. II. The Effects of Solvents and Added Alkalis in the Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 39(2), 329–333. DOI: 10.1246/bcsj.39.329.Otwórz DOISearch in Google Scholar
Valeš, R., Dvořák, B. & Krupka, J. (2021). The effect of water and substituents of aromatic ring on its hydrogenation over a cobalt catalyst. Revealed in Reference: 8th International Conference on Chemical Technology, 3-5 May 2021 (pp. 98–103). Prague, Czech Republic: Czech Society of Industrial Chemistry. ebook: 978-80-88307-08-2.Search in Google Scholar
Díaz, A., Acosta, D.R., Odriozola, J.A. & Montes, M. (1997). Characterization of Alkali-Doped Ni/SiO2 Catalysts. J. Phys. Chem. B. 101(10), 1782–1790. DOI: 10.1021/jp963145u.Otwórz DOISearch in Google Scholar
Dvořák, B. & Pašek, J. (1967). Einfluss der Zusammensetzung, der Herstellungsbedingungen und der Struktur des Kobaltkatalysators auf seine katalytische Aktivität für die Anilinhydrierung in der Gasphase. Collect. Czech. Chem. Commun. 32(10), 3476–3492. DOI: 10.1135/cccc19673476.Otwórz DOISearch in Google Scholar
Strejcová, D. (2008). Effect of alkali metals carbonates on reduction rate of Co3O4and strength of interactions between hydrogen and cobalt metal. Published bachelor thesis, University of Chemistry and Technology, Prague, Czech Republic.Search in Google Scholar
Veselá, D. (2016). Study of selected properties of cobalt catalysts. Published doctoral dissertation, University of Chemistry and Technology, Prague, Czech Republic.Search in Google Scholar
Li, D., Ichikuni, N., Shimazu, S. & Uematsu, T. (1998). Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation. Appl. Catal. A: Gen. 172(2), 351–358. DOI: 10.1016/S0926-860X(98)00139-2.Otwórz DOISearch in Google Scholar
Shi, H., Yang, H., Gao, P., Chen, X., Liu, H., Zhong, L., Wang, H., Wei, W. & Sun, Y. (2018). Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons. Chin. J. Catal. 39(8), 1294–1302. DOI: 10.1016/S1872-2067(18)63086-4.Otwórz DOISearch in Google Scholar
Pradeep, S.M., Weibin, L., Yijiao, J. & Huang, J. (2021). Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol. Energy Fuels. 35(10), 8558–8584. DOI: 10.1021/acs. energyfuels.1c00625.Otwórz DOISearch in Google Scholar