Zacytuj

1. Mozaffari, H.R., Izadi, B., Sadeghi, M., Rezaei, F., Sharifi, R. & Jalilian, F. (2016). Prevalence of oral and pharyngeal cancers in Kermanshah province, Iran: A ten-year period. Int. J. Cancer. Res. 12(3–4),169–175. DOI: 10.3923/ijcr.2016.169.175.10.3923/ijcr.2016.169.175Open DOISearch in Google Scholar

2. Mozaffari, H.R., Payandeh, M., Ramezani, M., Sadeghi, M., Mahmoudiahmadabadi, M. & Sharifi, R. (2017). Efficacy of palifermin on oral mucositis and acute GVHD after hematopoietic stem cell transplantation (HSCT) in hematology malignancy patients: a meta-analysis of trials. Współczesna. Onkol. 21(4), 299–305. DOI: 10.5114/wo.2017.72400.10.5114/wo.2017.72400Open DOISearch in Google Scholar

3. Benson, J.R. & Jatoi, I. (2012). The global breast cancer burden. Future. Oncol. 8(6), 697–702. DOI: 10.2217/fon.12.61.10.2217/fon.12.61Open DOISearch in Google Scholar

4. Mozaffari, H R., Zavattaro, E., Abdolahnejad, A., Lopez-Jornet, P., Omidpanah, N., Sharifi, R., Sadeghi, M., Shooriabi, M. & Safaei, M. (2018). Serum and Salivary IgA, IgG, and IgM Levels in Oral Lichen Planus: A Systematic Review and Meta-Analysis of Case-Control Studies. Medicina. 54(6), 99. DOI: 10.3390/medicina54060099.10.3390/medicina54060099Open DOISearch in Google Scholar

5. Mozaffari, H.R., Sharifi, R. & Sadeghi, M. (2018). Interleukin-6 levels in the serum and saliva of patients with oral lichen planus compared with healthy controls: a meta-analysis study. Centr. Eur. J. Immunol. 43(1), 103–108. DOI: 10.5114/ceji.2018.74880.10.5114/ceji.2018.74880Open DOISearch in Google Scholar

6. Veehof, M.M., Oskam, M.J., Schreurs, K.M. & Bohlmeijer, E.T. (2011). Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 152(3), 533–542. DOI: 10.1016/j.pain.2010.11.002.10.1016/j.pain.2010.11.002Open DOISearch in Google Scholar

7. Sharifi, R., Khazaei, S., Mozaffari, H.R., Amiri, S.M., Iranmanesh, P. & Mousavi, S.A. (2017). Effect of massage on the success of anesthesia and infiltration injection pain in maxillary central incisors: Double-blind, crossover trial. Dent. Hypotheses. 8(3), 61–64. DOI: 10.4103/denthyp.denthyp_52_1610.4103/denthyp.denthyp_52_16Open DOISearch in Google Scholar

8. Taran, M., Etemadi, S. & Safaei, M. (2017). Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II, III) oxide–levan nanocomposite. J. Appl. Polym. Sci. 134, 44613. DOI: 10.1002/app.44613.10.1002/app.44613Search in Google Scholar

9. Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Rottingen, J.A., Klugman, K. & Davies, S. (2016). Access to effective antimicrobials: a worldwide challenge. Lancet. 387(10014), 168–175. DOI: 10.1016/S0140-6736(15)00474-2.10.1016/S0140-6736(15)00474-2Open DOISearch in Google Scholar

10. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M. & Tauxe, R.V. (1999). Food-related illness and death in the United States. Emerg. Infect. Dis. 5(5), 607. DOI: 10.3201/eid0505.990502.10.3201/eid0505.990502262771410511517Search in Google Scholar

11. Elnashaie, S.S., Danafar, F. & Rafsanjani, H.H. (2015). Nanotechnology for chemical engineers. Springer, p. 273. DOI: 10.1007/978-981-287-496-2.10.1007/978-981-287-496-2Open DOISearch in Google Scholar

12. Zhang, L., Jiang, Y., Ding, Y., Povey, M. & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489. DOI: 10.1007/s11051-006-9150-1.10.1007/s11051-006-9150-1Open DOISearch in Google Scholar

13. Pachla, A., Lendzion-Bielun, Z., Moszynski, D., Markowska-Szczupak, A., Narkiewicz, U., Wrobel, R.J., Guskos, N. & Zołnierkiewicz, G. (2016). Synthesis and antibacterial properties of Fe3O4-Ag nanostructures. Pol. J. Chem. Tech. 18(4), 110–116. DOI: 10.1515/pjct-2016-0079.10.1515/pjct-2016-0079Open DOISearch in Google Scholar

14. Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H. & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 44, 278–284. DOI: 10.1016/j.msec.2014.08.031.10.1016/j.msec.2014.08.03125280707Open DOISearch in Google Scholar

15. Hezaveh, H. & Muhamad, I.I. (2012). Impact of metal oxide nanoparticles in oral release properties of pH-sensitive hydrogel nanocomposites. Int. J. Biol. Macromolec. 50, 1334–1340. DOI: 10.1016/j.ijbiomac.2012.03.017.10.1016/j.ijbiomac.2012.03.01722484730Open DOISearch in Google Scholar

16. Hotze, E.M., Phenrat, T. & Lowry, G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. J. Environ. Qual. 39(6), 1909–1924.10.2134/jeq2009.0462Search in Google Scholar

17. Safaei, M. & Taran, M. (2017). Fabrication, characterization, and antifungal activity of sodium hyaluronate-TiO2 bionanocomposite against Aspergillus niger. Materials Letters, 207, 113–116. DOI: 10.1016/j.matlet.2017.07.038.10.1016/j.matlet.2017.07.038Open DOISearch in Google Scholar

18. Safaei, M., Taran, M. & Imani M.M. (2019). Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite. Mater. Sci. Eng. C. 101, 323–329. DOI: 10.1016/j.msec.2019.03.108.10.1016/j.msec.2019.03.10831029325Open DOISearch in Google Scholar

19. Klemm, D., Heublein, B., Fink, H.P. & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. A. Chem. Int. Ed. 44(22), 3358–3393. DOI: 10.1002/anie.20046058710.1002/anie.20046058715861454Open DOISearch in Google Scholar

20. Fryczkowska, B. & Wiechniak, K. (2017). Preparation and properties of cellulose membranes with graphene oxide addition. Pol. J. Chem. Tech. 19(4), 41–49. DOI: 10.1515/pjct-2017-0066.10.1515/pjct-2017-0066Open DOISearch in Google Scholar

21. Hu, W., Chen, S., Yang, J., Li, Z. & Wang, H. (2014). Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 101, 1043–1060. DOI: 10.1016/j.carbpol.2013.09.102.10.1016/j.carbpol.2013.09.10224299873Open DOISearch in Google Scholar

22. Petersen, N. & Gatenholm, P. (2011). Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol. 91(5), 1277. DOI: 10.1007/s00253-011-3432-y.10.1007/s00253-011-3432-y21744133Open DOISearch in Google Scholar

23. Shao, W., Liu, H., Liu, X., Sun, H., Wang, S. & Zhang, R. (2015). pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int. J. Biol. Macromolec. 76, 209–217. DOI: 10.1016/j.ijbiomac.2015.02.048.10.1016/j.ijbiomac.2015.02.04825748842Open DOISearch in Google Scholar

24. Li, B., Zhang, Y., Yang, Y., Qiu, W., Wang, X., Liu, B., Wang, Y. & Sun, G. (2016). Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr. Polym. 152, 825–831. DOI: 10.1016/j.carbpol.2016.07.07010.1016/j.carbpol.2016.07.07027516334Open DOISearch in Google Scholar

25. Nguyen, V.T., Flanagan, B., Gidley, M.J. & Dykes, G.A. (2008). Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr. Microbiol. 57, 449–453. DOI: 10.1007/s00284-008-9228-310.1007/s00284-008-9228-318704575Open DOISearch in Google Scholar

26. Pathania, D., Kumari, M. & Gupta, V.K. (2015) Fabrication of ZnS–cellulose nanocomposite for drug delivery, antibacterial and photocatalytic activity. Mater. Des. 87, 1056–1064. DOI: 10.1016/j.matdes.2015.08.10310.1016/j.matdes.2015.08.103Open DOISearch in Google Scholar

27. Safaei, M. & Taran, M. (2017). Optimal conditions for producing bactericidal sodium hyaluronate-TiO2 bionanocomposite and its characterization. Int. J. Biol. Macromolec. 104, 449–456. DOI: 10.1016/j.ijbiomac.2017.06.016.10.1016/j.ijbiomac.2017.06.01628619641Open DOISearch in Google Scholar

28. Muhamad, I.I., Asgharzadehahmadi, S.A., Zaidel, D.N. A. & Supriyanto E. (2013). Characterisation and Evaluation of Antibacterial Properties of Polyacrylamide Based Hydrogel Containing Magnesium Oxide Nanoparticles. Int. J. Biol. Biomed. Eng. 7(3), 108–113.Search in Google Scholar

29. Jin, T. & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 13(12), 6877–6885. DOI: 10.1007/s11051-011-0595-5.10.1007/s11051-011-0595-5Open DOISearch in Google Scholar

30. Leung, Y.H., Ng, A., Xu, X., Shen, Z., Gethings, L.A., Wong, M.T., Chan, C., Guo, M.Y., Ng, Y.H., Djurisic, A.B. & Lee, P.K. (2014). Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 10(6), 1171–1183. DOI: 10.1002/smll.201302434.10.1002/smll.20130243424344000Open DOISearch in Google Scholar

31. Tang, Z.X. & Lv, B.F. (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3), 591–601. DOI: 10.1590/0104-6632.20140313s00002813.10.1590/0104-6632.20140313s00002813Open DOISearch in Google Scholar

32. Yadollahi, M., Gholamali, I., Namazi, H. & Aghazadeh, M. (2015). Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int. J. Biol. Macromolec. 74, 136–141. DOI: 10.1016/j.ijbiomac.2014.11.032.10.1016/j.ijbiomac.2014.11.03225524743Open DOISearch in Google Scholar

33. Zajac, A., Hanuza, J., Wandas, M. & Dyminska, L. (2015). Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim. Acta A. 134, 114–120. DOI: 10.1016/j.saa.2014.06.071.10.1016/j.saa.2014.06.07125011040Open DOISearch in Google Scholar

34. Sharma, R.K. (2012). A study in thermal properties of graft copolymers of cellulose and methacrylates. Adv. Appl. Sci. Res. 3(6), 3961–3969.Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering