Otwarty dostęp

Recycling of Cerium and Lanthanum from Glass Polishing Sludge

, , , ,  oraz   
31 gru 2019

Zacytuj
Pobierz okładkę

1. Hung, C.E. (2014). Resource Recovery, Leaching Modeling, Life Cycle Assessment and Carbon Footprint of Waste Glass Polishing Powder, Unpublished doctoral dissertation, University of Da-Yeh, Changhua, Taiwan.Search in Google Scholar

2. Pavel, J., Pavel, K., Jakub, E., Martin, S., Lubos, V., Martin, P., Jiri, H., Karel, M. & Miroslaw, S. (2015). Recovery of Cerium Dioxide from Spent Glass-Polishing Slurry and Its Utilization as a Reactive Sorbent for Fast Degradation of Toxic Organophosphates. Adv. Mater. Sci. Eng. 2015, Article ID 241421. DOI: 10.1155/2015/241421.10.1155/2015/241421Search in Google Scholar

3. Tan, Q., Deng, C. & Li, J. (2017). Enhanced recovery of rare earth elements from waste phosphors by mechanical activation. Cleaner. Production. 142(4), 2187–2191. DOI: 10.1016/j.jclepro.2016.11.062.10.1016/j.jclepro.2016.11.062Open DOISearch in Google Scholar

4. Padhan, E., Nayak, A.K. & Sarangi, K. (2017). Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy. 174, 210–215. DOI: 10.1016/j.hydromet.2017.10.015.10.1016/j.hydromet.2017.10.015Open DOISearch in Google Scholar

5. Bolanz, R.M., Kiefer, S., Gottlicher, J. & Steininger, R. (2018). Hematite (α-Fe2O3) – A potential Ce4 + carrier in red mud. Sci. Total. Environ. 622–623, 849–860. DOI: 10.1016/j.scitotenv.2017.12.043.10.1016/j.scitotenv.2017.12.04329227935Open DOISearch in Google Scholar

6. Lee, C.H., Chang, Y.W., Popuri, S.R., Hung, C.E., Liao, C.H., Chang, J-E. & Chen, W. (2018). Recovery of silicon, copper and aluminum from scrap silicon wafers by leaching and precipitation. Environ. Eng. Manag. J. 17(3), 561–568. DOI: 10.1177/0734242X13479433.10.1177/0734242X1347943323460539Open DOISearch in Google Scholar

7. Lee, C.H., Liao, C.H., Popuri, S.R. & Hung, C.E. (2017). Integrated process development for the recovery of Europium and Yttrium from waste fluorescent powder. Mater. Cycles. Waste. Manag. 19(3), 1235–1243. DOI: 10.1007/s10163-016-0515-y.10.1007/s10163-016-0515-yOpen DOISearch in Google Scholar

8. Kim, R., Cho, H., Han, K.N., Kim, K., Mun, M. (2016). Optimization of Acid Leaching of Rare-Earth Elements from Mongolian Apatite-Based Ore. Minerals. 6, 63. DOI: 10.3390/min6030063.10.3390/min6030063Search in Google Scholar

9. Yuan, H., Hong, W., Zhou, Y., Pu, B., Gong, A., Xu, T., Yang, Q., Li, F., Qiu, L., Zhang, W. & Liu, Y. (2018). Extraction and back-extraction behaviors of 14 rare earth elements from sulfuric acid medium by TODGA. Rare Earths. 36(6), 642–647. DOI: 10.1016/j.jre.2018.01.011.10.1016/j.jre.2018.01.011Open DOISearch in Google Scholar

10. Sobianowska-Turek, A. (2018). Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells. Waste. Manag. 77, 213–219. DOI: 10.1016/j.wasman.2018.03.046.10.1016/j.wasman.2018.03.04629655922Search in Google Scholar

11. Lee, C.H., Yen, H.Y., Liao, C.H., Popuri, S.R., Cadogan, E. & Hsu, C.J. (2017). Hydrometallurgical processing of Nd–Fe–B magnets for Nd purification. J. Mater. Cycles. Waste. Manag. 19(1), 102–110. DOI: 10.1007/s10163-015-0382-y.10.1007/s10163-015-0382-yOpen DOISearch in Google Scholar

12. Önal, M.A.R., Aktan, E., Borra, C.R., Blanpain, B., Van Gerven, T. & Guo, M. (2017). Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy. 167, 115–123. DOI: 10.1016/j.hydromet.2016.11.006.10.1016/j.hydromet.2016.11.006Open DOISearch in Google Scholar

13. Ferdowsi, A. & Yoozbashizaden, H. (2017). Process optimization and kinetics for leaching of cerium, lanthanum and neodymium elements from iron ore waste’s apatite by nitric acid. T. Nonferr. Metal. Soc. 27(2), 420–428. DOI: 10.1016/S1003-6326(17)60048-7.10.1016/S1003-6326(17)60048-7Open DOISearch in Google Scholar

14. de Vasconcellos, M.E., da Rocha, S.M.R., Pedreira, W.R., Queiroz, C.A.d.S. & Abrão, A. (2008). Solubility behavior of rare earths with ammonium carbonate and ammonium carbonate plus ammonium hydroxide: Precipitation of their peroxicarbonates. J. Alloys Comp. 451, (1–2), 426–428. DOI: 10.1016/j.jallcom.2007.04.163.10.1016/j.jallcom.2007.04.163Open DOISearch in Google Scholar

15. Wang, J., Huang, X., Cui, D., Wang, L., Feng, Z., Hu, B., Long, Z. & Zhao, N. (2017). Recovery of rare earths and aluminum from FCC waste slag by acid leaching and selective precipitation. J. Rare Earths. 35(11), 1141–1148. DOI: 10.1016/j.jre.2017.05.011.10.1016/j.jre.2017.05.011Open DOISearch in Google Scholar

16. Ozawa, M., Onoe, R. & Kato, H. (2006). Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. J. Alloys Comp. 408–412, 556–559. DOI: 10.1016/j.jallcom.2004.12.073.10.1016/j.jallcom.2004.12.073Open DOISearch in Google Scholar

17. Khawassek, Y.M., Eliwa, A.A., Gawad, E.A. & Abdo, S.M. (2015). Recovery of rare earth elements from El-Sela effluent solutions. J. Radiat. Res. Appl. Sci. 8(4), 583–589. DOI: 10.1016/j.jrras.2015.07.002.10.1016/j.jrras.2015.07.002Open DOISearch in Google Scholar

18. Akinc, M., Sordelet, D.J. & Munson, M. (1988). Formation, structure, and decomposition of lanthanide basic carbonates. J. Adv. Ceram. Mat. 3(3), 211–216. DOI: 10.1111/j.1551-2916.1988.tb00203.x.10.1111/j.1551-2916.1988.tb00203.xOpen DOISearch in Google Scholar

19. Panchula, M.L. & Akinc, M. (1996). Morphology of lanthanum carbonate particles prepared by homogeneous precipitation. J. Eur. Ceram. Soc. 16(8), 833–841. DOI: 10.1016/0955-2219(95)00211-1.10.1016/0955-2219(95)00211-1Search in Google Scholar

20. Umeda, K. & Abrao, A. (1975). Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange [Abstract]. Instituto de Energia Atomica. 8(9), No. 395, 46 [in Portuguese]. Retrieved January 10, 2019, from https://inis.iaea.org.Search in Google Scholar

21. Kim, J.K., Kim, U.S., Byeon, M.S., Kang, W.K., Hwang, K.T. & Cho, W.S. (2011). Recovery of cerium from glass polishing slurry. J. Rare Earths. 29(11), 1075–1078. DOI: 10.1016/S1002-0721(10)60601-1.10.1016/S1002-0721(10)60601-1Open DOISearch in Google Scholar

22. Qi, D. (2018). Hydrometallurgy of Rare Earths: Extraction and Separation. Cambridge, MA: Elsevier. Book chapter 7, 671–741.10.1016/B978-0-12-813920-2.00007-6Search in Google Scholar

23. Kondo, K., Matsuo, T. & Matsumoto, M. (2015). Adsorptive separation of La, Ce and Pr using microcapsules containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. Hydrometallurgy. 152, 204–213. DOI: 10.1016/j.hydromet.2015.01.004.10.1016/j.hydromet.2015.01.004Open DOISearch in Google Scholar

24. TEPA (Taiwan Environmental Protection Agency). (1998). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/6362E9621F5D38DC. [in Chinese]Search in Google Scholar

25. TEPA (Taiwan Environmental Protection Agency). (1992). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/7FB27BAD6A4AC928. [in Chinese]Search in Google Scholar

26. TEPA (Taiwan Environmental Protection Agency). (1993). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/D650FF755904A079. [in Chinese]Search in Google Scholar

27. Kuchma, M.H., Komanski, C.B., Colon, J., Teblum, A., Masunov, A.E., Alvarado, B., Babu, S., Seal, S., Summy, J. & Baker, C.H. (2010). Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed-Nanotechnol. 6(6), 738–744. DOI: 10.1016/j.nano.2010.05.004.10.1016/j.nano.2010.05.00420553964Open DOISearch in Google Scholar

28. Benavides, S. (2009). Corrosion control in the aerospace industry. Woodhead Publishing: Elsevier.10.1201/9781439829202.ch1Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemia przemysłowa, Biotechnologia, Inżynieria chemiczna, Inżynieria procesowa