Cite

1. Hung, C.E. (2014). Resource Recovery, Leaching Modeling, Life Cycle Assessment and Carbon Footprint of Waste Glass Polishing Powder, Unpublished doctoral dissertation, University of Da-Yeh, Changhua, Taiwan.Search in Google Scholar

2. Pavel, J., Pavel, K., Jakub, E., Martin, S., Lubos, V., Martin, P., Jiri, H., Karel, M. & Miroslaw, S. (2015). Recovery of Cerium Dioxide from Spent Glass-Polishing Slurry and Its Utilization as a Reactive Sorbent for Fast Degradation of Toxic Organophosphates. Adv. Mater. Sci. Eng. 2015, Article ID 241421. DOI: 10.1155/2015/241421.10.1155/2015/241421Search in Google Scholar

3. Tan, Q., Deng, C. & Li, J. (2017). Enhanced recovery of rare earth elements from waste phosphors by mechanical activation. Cleaner. Production. 142(4), 2187–2191. DOI: 10.1016/j.jclepro.2016.11.062.10.1016/j.jclepro.2016.11.062Open DOISearch in Google Scholar

4. Padhan, E., Nayak, A.K. & Sarangi, K. (2017). Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy. 174, 210–215. DOI: 10.1016/j.hydromet.2017.10.015.10.1016/j.hydromet.2017.10.015Open DOISearch in Google Scholar

5. Bolanz, R.M., Kiefer, S., Gottlicher, J. & Steininger, R. (2018). Hematite (α-Fe2O3) – A potential Ce4 + carrier in red mud. Sci. Total. Environ. 622–623, 849–860. DOI: 10.1016/j.scitotenv.2017.12.043.10.1016/j.scitotenv.2017.12.04329227935Open DOISearch in Google Scholar

6. Lee, C.H., Chang, Y.W., Popuri, S.R., Hung, C.E., Liao, C.H., Chang, J-E. & Chen, W. (2018). Recovery of silicon, copper and aluminum from scrap silicon wafers by leaching and precipitation. Environ. Eng. Manag. J. 17(3), 561–568. DOI: 10.1177/0734242X13479433.10.1177/0734242X1347943323460539Open DOISearch in Google Scholar

7. Lee, C.H., Liao, C.H., Popuri, S.R. & Hung, C.E. (2017). Integrated process development for the recovery of Europium and Yttrium from waste fluorescent powder. Mater. Cycles. Waste. Manag. 19(3), 1235–1243. DOI: 10.1007/s10163-016-0515-y.10.1007/s10163-016-0515-yOpen DOISearch in Google Scholar

8. Kim, R., Cho, H., Han, K.N., Kim, K., Mun, M. (2016). Optimization of Acid Leaching of Rare-Earth Elements from Mongolian Apatite-Based Ore. Minerals. 6, 63. DOI: 10.3390/min6030063.10.3390/min6030063Search in Google Scholar

9. Yuan, H., Hong, W., Zhou, Y., Pu, B., Gong, A., Xu, T., Yang, Q., Li, F., Qiu, L., Zhang, W. & Liu, Y. (2018). Extraction and back-extraction behaviors of 14 rare earth elements from sulfuric acid medium by TODGA. Rare Earths. 36(6), 642–647. DOI: 10.1016/j.jre.2018.01.011.10.1016/j.jre.2018.01.011Open DOISearch in Google Scholar

10. Sobianowska-Turek, A. (2018). Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells. Waste. Manag. 77, 213–219. DOI: 10.1016/j.wasman.2018.03.046.10.1016/j.wasman.2018.03.04629655922Search in Google Scholar

11. Lee, C.H., Yen, H.Y., Liao, C.H., Popuri, S.R., Cadogan, E. & Hsu, C.J. (2017). Hydrometallurgical processing of Nd–Fe–B magnets for Nd purification. J. Mater. Cycles. Waste. Manag. 19(1), 102–110. DOI: 10.1007/s10163-015-0382-y.10.1007/s10163-015-0382-yOpen DOISearch in Google Scholar

12. Önal, M.A.R., Aktan, E., Borra, C.R., Blanpain, B., Van Gerven, T. & Guo, M. (2017). Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy. 167, 115–123. DOI: 10.1016/j.hydromet.2016.11.006.10.1016/j.hydromet.2016.11.006Open DOISearch in Google Scholar

13. Ferdowsi, A. & Yoozbashizaden, H. (2017). Process optimization and kinetics for leaching of cerium, lanthanum and neodymium elements from iron ore waste’s apatite by nitric acid. T. Nonferr. Metal. Soc. 27(2), 420–428. DOI: 10.1016/S1003-6326(17)60048-7.10.1016/S1003-6326(17)60048-7Open DOISearch in Google Scholar

14. de Vasconcellos, M.E., da Rocha, S.M.R., Pedreira, W.R., Queiroz, C.A.d.S. & Abrão, A. (2008). Solubility behavior of rare earths with ammonium carbonate and ammonium carbonate plus ammonium hydroxide: Precipitation of their peroxicarbonates. J. Alloys Comp. 451, (1–2), 426–428. DOI: 10.1016/j.jallcom.2007.04.163.10.1016/j.jallcom.2007.04.163Open DOISearch in Google Scholar

15. Wang, J., Huang, X., Cui, D., Wang, L., Feng, Z., Hu, B., Long, Z. & Zhao, N. (2017). Recovery of rare earths and aluminum from FCC waste slag by acid leaching and selective precipitation. J. Rare Earths. 35(11), 1141–1148. DOI: 10.1016/j.jre.2017.05.011.10.1016/j.jre.2017.05.011Open DOISearch in Google Scholar

16. Ozawa, M., Onoe, R. & Kato, H. (2006). Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. J. Alloys Comp. 408–412, 556–559. DOI: 10.1016/j.jallcom.2004.12.073.10.1016/j.jallcom.2004.12.073Open DOISearch in Google Scholar

17. Khawassek, Y.M., Eliwa, A.A., Gawad, E.A. & Abdo, S.M. (2015). Recovery of rare earth elements from El-Sela effluent solutions. J. Radiat. Res. Appl. Sci. 8(4), 583–589. DOI: 10.1016/j.jrras.2015.07.002.10.1016/j.jrras.2015.07.002Open DOISearch in Google Scholar

18. Akinc, M., Sordelet, D.J. & Munson, M. (1988). Formation, structure, and decomposition of lanthanide basic carbonates. J. Adv. Ceram. Mat. 3(3), 211–216. DOI: 10.1111/j.1551-2916.1988.tb00203.x.10.1111/j.1551-2916.1988.tb00203.xOpen DOISearch in Google Scholar

19. Panchula, M.L. & Akinc, M. (1996). Morphology of lanthanum carbonate particles prepared by homogeneous precipitation. J. Eur. Ceram. Soc. 16(8), 833–841. DOI: 10.1016/0955-2219(95)00211-1.10.1016/0955-2219(95)00211-1Search in Google Scholar

20. Umeda, K. & Abrao, A. (1975). Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange [Abstract]. Instituto de Energia Atomica. 8(9), No. 395, 46 [in Portuguese]. Retrieved January 10, 2019, from https://inis.iaea.org.Search in Google Scholar

21. Kim, J.K., Kim, U.S., Byeon, M.S., Kang, W.K., Hwang, K.T. & Cho, W.S. (2011). Recovery of cerium from glass polishing slurry. J. Rare Earths. 29(11), 1075–1078. DOI: 10.1016/S1002-0721(10)60601-1.10.1016/S1002-0721(10)60601-1Open DOISearch in Google Scholar

22. Qi, D. (2018). Hydrometallurgy of Rare Earths: Extraction and Separation. Cambridge, MA: Elsevier. Book chapter 7, 671–741.Search in Google Scholar

23. Kondo, K., Matsuo, T. & Matsumoto, M. (2015). Adsorptive separation of La, Ce and Pr using microcapsules containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. Hydrometallurgy. 152, 204–213. DOI: 10.1016/j.hydromet.2015.01.004.10.1016/j.hydromet.2015.01.004Open DOISearch in Google Scholar

24. TEPA (Taiwan Environmental Protection Agency). (1998). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/6362E9621F5D38DC. [in Chinese]Search in Google Scholar

25. TEPA (Taiwan Environmental Protection Agency). (1992). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/7FB27BAD6A4AC928. [in Chinese]Search in Google Scholar

26. TEPA (Taiwan Environmental Protection Agency). (1993). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/D650FF755904A079. [in Chinese]Search in Google Scholar

27. Kuchma, M.H., Komanski, C.B., Colon, J., Teblum, A., Masunov, A.E., Alvarado, B., Babu, S., Seal, S., Summy, J. & Baker, C.H. (2010). Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed-Nanotechnol. 6(6), 738–744. DOI: 10.1016/j.nano.2010.05.004.10.1016/j.nano.2010.05.00420553964Open DOISearch in Google Scholar

28. Benavides, S. (2009). Corrosion control in the aerospace industry. Woodhead Publishing: Elsevier.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering