Otwarty dostęp

Synthesis of a novel environmental friendly plasticizer based on tung oil fatty acid for poly (vinyl chloride) blends


Zacytuj

1. Ang, D.T., Khong, Y.K. & Gan, S.N. (2014). Palm oil--based compound as environmentally friendly plasticizer for poly(vinyl chloride). J. Vinyl Addit. Technol. 22 (1), 80–87. DOI 10.1002/vnl.21434.10.1002/vnl.21434Open DOISearch in Google Scholar

2. Hsu, N.Y., Liu, Y.C., Lee, C.W. & Su, H.J. (2017). Higher moisture content is associated with greater emissions of DEHP from PVC wallpaper. Environ. Res. 152, 1–6. DOI: 10.1016/j.envres.2016.09.027.10.1016/j.envres.2016.09.027Open DOISearch in Google Scholar

3. Pyeon, H.B., Park, J.E. & Done, H.S.(2017). Non-phthalate plasticizer from camphor for flexible PVC with a wide range of available temperature. Polym. Test. 63. DOI 10.1016/j.polymertesting.2017.08.029.10.1016/j.polymertesting.2017.08.029Open DOISearch in Google Scholar

4. Zheng, X. & Gilbert, M. (2000). Impact strength of high density microcellular poly(vinyl chloride) foams. J. Vinyl Addit. Technol. 6(2), 93–99. DOI 10.1002/vnl.21408.10.1002/vnl.21408Open DOISearch in Google Scholar

5. Shi, G.X., Cooper, D.G. & Maric, M. (2011). Poly(E-caprolactone)-based ‘green’ plasticizers for poly(vinyl chloride). Polym. Degrad. Stabil. 96 (9), 1639–1647. DOI 10.1016/J.Polymdegradstab.2011.06.007.10.1016/J.Polymdegradstab.2011.06.007Open DOISearch in Google Scholar

6. Benaniba, M.T. & Massardier-Nageotte, V.(2010). Evaluation effects of biobased plasticizer on the thermal, mechanical, dynamical mechanical properties, and permanence of plasticized PVC. J. Appl. Polym. Sci. 118 (6), 3499–3508. DOI 10.1002/app.32713.10.1002/app.32713Open DOISearch in Google Scholar

7. Rahman, M. & Bazel, C.S. (2004). The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 29 (12), 1223–1248. DOI: https://doi.org/10.1016/j.progpolymsci.2004.10.001.10.1016/j.progpolymsci.2004.10.001Open DOISearch in Google Scholar

8. Jia, P., Zhang, M., Hu, L., Wang, R., Sun, C. & Zhou, Y. (2017). Cardanol groups grafted on poly(vinyl chloride)-synthesis, performance and plasticization mechanism. Polymers, 9(11), 621. DOI: 10.3390/polym9110621.10.3390/polym9110621Open DOISearch in Google Scholar

9. Chen, J., Liu, Z., Li, X., Liu, P., Jiang, J. & Nie, X. (2016) Thermal behavior of epoxidized cardanol diethyl phosphate as novel renewable plasticizer for poly(vinyl chloride). Polym. Degrad. Stabil. 126, 58–64. https://doi.org/10.1016/j.polymdegradstab.2016.01.018.10.1016/j.polymdegradstab.2016.01.018Open DOISearch in Google Scholar

10. Chen, J., Wang, Y., Huang, J., Li, K. & Nie, X.(2018). Synthesis of tung-oil-based triglycidyl ester plasticizer and its effects on poly(vinyl chloride) soft films.ACS Sustainable Chem. Eng. 6(1), 642–651. DOI: 10.1021/acssuschemeng.7b02989.10.1021/acssuschemeng.7b02989Search in Google Scholar

11. Chen, J., Wang, Y., Huang, J., Li, K., Nie, X. & Jiang, J. (2017).Synthesis and properties of a novel environmental epoxidized glycidyl ester of ricinoleic acetic ester plasticizer for poly(vinyl chloride). Polymers. 9(12), 640. DOI: 10.3390/polym9120640.10.3390/polym9120640Open DOISearch in Google Scholar

12. Chen, J., Nie, X. & Jiang, J. (2018). Synthesis and application of a novel cardanol-based plasticizer as secondary or main plasticizer for poly(vinyl chloride). Polym. Int. 67(3), 269–275. DOI: https://doi.org/10.1002/pi.5503.10.1002/pi.5503Open DOISearch in Google Scholar

13. Jia, P., Hu, L., Shang, Q., Wang, R., Zhang, M. & Zhou, Y. (2017). Self-Plasticization of PVC materials via chemical modification of mannich base of cardanol butyl ether. ACS Sustain. Chem Eng. 5(8), 6665–6673. DOI: 10.1021/acssuschemeng.7b00900.10.1021/acssuschemeng.7b00900Open DOISearch in Google Scholar

14. Jia, P., Zhang, M., Liu, C., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer. RSC Adv. 2015, 5, 41169–41178. DOI 10.1039/C5RA05784A.10.1039/505784Open DOISearch in Google Scholar

15. Chieng, B.W., Ibrahim, N.A., Then, Y.Y. & Loo, Y.Y. (2017). Epoxidized jatropha oil as a sustainable plasticizer to poly(lactic acid). Polymers. 9, 204–214. DOI: 10.3390/polym9060204.10.3390/polym9060204Open DOISearch in Google Scholar

16. Fenollar, O., Garcia-sanoguera, D., Sanchez-Nacher, L., Lopez, J. & Balart, R. (2013). Mechanical and thermal properties of polyvinyl chloride plasticized with natural fatty acid esters. Polymer-Plastics Technology and Engineering. 52, 751–767. https://doi.org/10.1080/03602559.2013.763352.10.1080/03602559.2013.763352Open DOISearch in Google Scholar

17. Jia,. P., Zhang, M., Hu, L. & Zhou, Y. (2016).A novel biobased polyester plasticizer prepared from palm oil and its plasticizing effect on poly (vinyl chloride). Pol. J. Chem. Technol. 18(1), 9–14. DOI: https://doi.org/10.1515/pjct-2016-0002.10.1515/pjct-2016-0002Open DOISearch in Google Scholar

18. Lee, S., Park, M.S., Shin, J. & Kim, Y.W. (2018). Effect of the individual and combined use of cardanol-based plasticizers and epoxidized soybean oil on the properties of PVC. Polym. Degrad. Stabil. DOI: 10.1016/j.polymdegradstab.2017.11.002.10.1016/j.polymdegradstab.2017.11.002Open DOISearch in Google Scholar

19. Chaudhary, B.I., Nguyen, B., Smith, P., Sunday, N. & Luong, M. (2015). Bis(2-ethylhexyl) succinate in mixtures with epoxidized soybean oil as bio-based plasticizers for poly(vinylchloride). Polym. Eng. Sci. 55 (3), 634–640. DOI: 10.1002/pen.23934.10.1002/pen.23934Open DOISearch in Google Scholar

20. Jia, P., Zhang, M., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Synthesis and application of environmental castor oil based polyol ester plasticizers for poly (vinyl chloride). ACS Sustain. Chem. Eng. 3, 2187–2193. DOI: 10.1021/acssuschemeng.5b00449.10.1021/acssuschemeng.5b00449Open DOISearch in Google Scholar

21. Gamage, P.K. & Farid, A.S. (2011). Migration of novel epoxidized neem oil as plasticizer from PVC: Experimental design approach. J. Appl. Polym. SCI. 121(2), 823–838. DOI: 10.1002/app.33554.10.1002/app.33554Open DOISearch in Google Scholar

22. Yang, B., Bai Y. & Cao, Y. (2010). Effects of inorganic nano-particles on plasticizers migration of flexible PVC. J. Appl. Polym. Sci. 115(4), 2178–2182. DOI: 10.1002/app.31310.10.1002/app.31310Open DOISearch in Google Scholar

23. Lacerda, T., Carvalho, A.F. & Gandini, A. (2014). Two alternative approaches to the Diels-Alder polymerization of tung oil. RSC Adv. 4(51), 26829–26837. DOI: 10.1039/c4ra03416c.10.1039/c4ra03416cOpen DOISearch in Google Scholar

24. Huang, K., Liu, Z., Zhang, J., Li, S., Li, M., Xia, J. & Zhou, Y. (2014) Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways. Biomacromolecules. 15(3), 837–843. DOI: 10.1021/bm4018929.10.1021/bm4018929Open DOISearch in Google Scholar

25. Yang, X., Li, S., Xia, J., Song, J., Huang, K. & Li, M. (2015). Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: Preparation, characterization and properties. Ind. Crop. Prod. 63, 17–25. DOI: 10.1016/j.indcrop.2014.10.024.10.1016/j.indcrop.2014.10.024Open DOISearch in Google Scholar

26. Meiorin, C., Aranguren, M.I. & Mosiewicki, M.A. (2015). Polymeric networks based on tung oil: Reaction and modification with green oil monomers. Eur. Polym. J. 67, 551–560. DOI: 10.1016/j.eurpolymj.2015.01.005.10.1016/j.eurpolymj.2015.01.005Open DOISearch in Google Scholar

27. Jia, P., Hu, L., Yang, X., Zhang, M., Shang, Q. & Zhou, Y. (2017). Internally plasticized PVC materials via covalent attachment of aminated tung oil methyl ester. RSC Adv. 7(48), 30101–30108. DOI: 10.1039/C7RA04386D.10.1039/704386Open DOISearch in Google Scholar

28. Jia, P., Zhang, M., Hu, L., Song, F., Feng, G. & Zhou, Y. (2017). A strategy for nonmigrating plasticized PVC modified with mannich base of waste cooking oil methyl ester. Sci Rep. 2018; 8: 1589. DOI: 10.1038/s41598-018-19958-y.10.1038/s41598-018-19958-ySearch in Google Scholar

29. Yao, Q. & Wilkie, C.A. (2001).Thermal degradation of PVC in the presence of polystyrene. J. Vinyl. Addit. Technol.7(1), 26–36. DOI: 10.1002/vnl.10261.10.1002/vnl.10261Open DOISearch in Google Scholar

30. Soudais, Y., Moga, L., Blazek, J. & Lemort, F. (2007). Coupled DTA-TGA-FT-IR investigation of pyrolytic decomposition of EVA, PVC and cellulose. J. Anal. Appl. Pyrolysis.78(1):46–57. DOI: https://doi.org/10.1016/j.jaap.2006.04.005.10.1016/j.jaap.2006.04.005Open DOISearch in Google Scholar

31. Li, Y., Wang, C., Wang G. & Qu, Z. (2008). Application of the long-chain linear polyester in plastification of PVC. J. Wuhan Univ. Technol. 23(1), 100–104. DOI: 10.1007/S11595-006-1100-3.10.1007/S11595-006-1100-3Open DOISearch in Google Scholar

32.Yin, B. & Hakkarainen, M. (2010). Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC. J. Appl. Polym. Sci. 119(4), 2400–2407. DOI: 10.1002/app.32913.10.1002/app.32913Open DOISearch in Google Scholar

33. Gonzalez, N. & Fernandez-Berridi, M.J. (2006). Application of fourier transform infrared spectroscopy in the study of interactions between PVC and plasticizers: PVC/plasticizer compatibility versus chemical structure of plasticizer. J. Appl. Polym. Sci. 101, 1731–1737. DOI: 10.1002/app.23381.10.1002/app.23381Open DOISearch in Google Scholar

34. Suresh, S.S., Mohanty, S. & Nayak, S.K. (2017). Bio-based epoxidised oil for compatibilization and value addition of poly (vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) in recycled blend. J. Polym. Res. 24, 120. DOI: https://doi.org/10.1007/s10965-017-1282-8.10.1007/s10965-017-1282-8Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering