Otwarty dostęp

Characterization of FeCo based catalyst for ammonia decomposition. The effect of potassium oxide


Zacytuj

1. Schlapbach, L. & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. Nature. 414, 353-358.10.1038/35104634Search in Google Scholar

2. Chellappa, A.S., Fischer, C.M. & Thomson, W.J. (2002). Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal. A. 227, 231-240.10.1016/S0926-860X(01)00941-3Search in Google Scholar

3. Yin, S.F., Zhang, Q.H., Xu, B.Q., Zhu, W.X., Ng, Ch.F. & Au, Ch.T. (2004). Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 224, 384-396. DOI: 10.1016/j.jcat.2004.03.008.10.1016/j.jcat.2004.03.008Search in Google Scholar

4. Yin, S.F., et al. (2004). A mini-review on ammonia decomposition catalysts for on site generation of hydrogen for fuel cell applications. Appl. Catal. A. 277, 1-9. DOI: 10.1016/j. apcata.2004.09.020.Search in Google Scholar

5. Schuth, F., Palkovits, R., Schlogl, R. & Su, D.S. (2012). Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ. Sci. 5, 6278-6289. DOI: 10.1039/c2ee02865d.10.1039/C2EE02865DSearch in Google Scholar

6. Lendzion-Bielun, Z., Pelka, R. & Arabczyk, W. (2009). Study of the Kinetics of Ammonia Synthesis and Decomposition on Iron and Cobalt Catalysts. Catal. Lett. 129, 119-121. DOI: 10.1007/s10562-008-9785-x.10.1007/s10562-008-9785-xSearch in Google Scholar

7. Choi, J.G. (2004). Ammonia decomposition over Mo carbide catalysts. J. Ind. Eng. Chem. 10, 967-971.Search in Google Scholar

8. Choi, J.G. (1999). Ammonia decomposition over vanadium carbide catalysts. J. Catal. 182, 104-116.10.1006/jcat.1998.2346Search in Google Scholar

9. Ganley, J.C., Thomas, F.S., Seebauer, E.G. & Masel, R.I. (2004). A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal. Lett. 96, 117-122. DOI: 1011-372X/04/0700-0117/0.10.1023/B:CATL.0000030108.50691.d4Search in Google Scholar

10. Hansgen, D.A., Vlachos, D.G. & Chen, J.G. (2010). Using First principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nature Chem. 2, 484-489. DOI: 10.1038/NCHEM.626.10.1038/nchem.62620489718Search in Google Scholar

11. Duan, X., Ji, J., Qian, G., Fan, Ch., Zhu, Y., Zhou, X., Chen, D., Yuan, W. (2012). Ammonia decomposition on Fe(11), Co(111) and Ni(111) surfaces: A density functional theory study. J. Mol. Catal. A: Chem. 357, 81-86. DOI: 10.1016/j. molcata.2012.01.023.Search in Google Scholar

12. Pelka, R., Moszynska, I. & Arabczyk, W. (2009). Catalytic ammonia decomposition over Fe/Fe4N. Catal. Lett. 128, 72-76. DOI: 10.1007/s10562-008-9758-0.10.1007/s10562-008-9758-0Search in Google Scholar

13. Lendzion-Bieluń, Z. & Arabczyk, W. (2013). Fused FeCo catalysts for hydrogen production by means of the ammonia decomposition reaction. Catal. Today. 212, 215-219. DOI: 10.1016/j.cattod.2012.12.014.10.1016/j.cattod.2012.12.014Search in Google Scholar

14. Duan, X., Qian, G., Zhou, X., Chen, D. & Yuan, W. (2012). MCM-41 supported Co-Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chem. Eng. J. 207-208, 103-108. DOI: 10.1016/j.cej.2012.05.100.10.1016/j.cej.2012.05.100Search in Google Scholar

15. Ji, J., Duan, X., Qian, G., Zhou, X., Tong, G. & Yuan, W. (2014). Towards an effiecient CoMo/γ−Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy. 39, 12490-12498. DOI: 10.1016/j. ijhydene.2014.06.081.Search in Google Scholar

16. Liang, Ch., Li, W., Xin, Q. & Li, C. (2000). Catalytic decomposition of ammonia over nitrided NiMoNx/α−Al2O3 catalysts. Ind. Eng. Chem. Res. 39, 3694-3697. DOI: 10.1021/ ie990931n.10.1021/ie990931nSearch in Google Scholar

17. Zhang, J., Muller, J.-O., Zheng, W., Wang, D., Su, D. & Schlögl, R. (2008). Individual Fe-Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano Lett. 8(9), 2738-2743. DOI: 10.1021/nl8011984.10.1021/nl8011984Search in Google Scholar

18. Hill, A.K. & Torrente-Murciano, L. (2014). In-situ H2 production via low temperature decomposition of ammonia: Insights into the role of cesium as a promoter. Inter. J. Hydro. Ene. 39, 7646-7654. DOI: 10.1016/j.ijhydene.2014.03.043.10.1016/j.ijhydene.2014.03.043Search in Google Scholar

19. Raróg-Pilecka, W., Szmigiel, D., Kowalczyk, Z., Jodzis, S. & Zielinski, J. (2003). Ammonia decomposition over the carbon- based ruthenium catalyst promoted with barium or cesium. J. Catal. 218, 465-469. DOI: 10.1016/S0021-9517(03)00058-7.10.1016/S0021-9517(03)00058-7Search in Google Scholar

20. Pelka, R. & Arabczyk, W. (2013). A new method for determining the nanocrystallite size distribution in systems where chemical reaction between solid and a gas phase occurs. J. Nanomat. DOI: 10.1155/2013/645050. 10.1155/2013/645050Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering