Otwarty dostęp

Influence of the kind and concentration of ethoxylated alcohols on the transport of citric acid through polymer inclusion membranes


Zacytuj

1. Kristiansen, B., Mattey, M. & Linden, J. (2002). Citricacid biotechnology (1st ed.). Taylor and Francis.Search in Google Scholar

2. Dhillon, G.S., Brar, S.K. , Verma, M. & Tyagi, R.D. (2011). Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 4(4), 505-509. DOI: 10.1007/s11947-010-0399-0.10.1007/s11947-010-0399-0Open DOISearch in Google Scholar

3. Papanikolaou, S., Munigl ia, L., Chevalot, I., Aggelis, G. & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92 (4), 737-744. DOI: 10.1046/j.1365-2672.2002.01577.x.10.1046/j.1365-2672.2002.01577.xOpen DOISearch in Google Scholar

4. Rywińska, A., Rymowicz, W. , Żarowska, B. & Wojtatowicz, M. (2009). Biosynthesis of citric acid from glicerol by acetale mutants of Yarrowia lipolytica in fed-batch fermentation. FoodTechnol. Biotechnol. 47, 1-6.Search in Google Scholar

5. Soccol, C., Vandenberghe, L. & Rodrigues, C. (2008). Current Developments in solid-state fermentation. Productionof Organic Acids by Solid-state Fermentation, (pp. 205-229). Springer New York, Retrieved October, 2011, from Springer- Link, http://link.springer.com/book/10.1007/978-0-387-75213-6/ page/1. DOI: 10.1007/978-0-387-75213-6_10.10.1007/978-0-387-75213-6_10Open DOISearch in Google Scholar

6. da Silva, G.P., Mack, M. & Contiego, J. (2009). Glicerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27, 30-39. DOI: 10.1016/j.biotechadv. 2008.07.006.10.1016/j.biotechadv.2008.07.006Open DOISearch in Google Scholar

7. Kirsch, T., Ziegenfuss, H. & Maurer, G. (1997). Distribution of citric, acetic and oxalic acids between water and organic solutions of tri-n-octylamine. Fluid Phase Equilib. 129, 235-266.10.1016/S0378-3812(96)03154-8Search in Google Scholar

8. Juang, R.S., Huang, R.H. & Wu, R.T. (1997). Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes. J. Membr. Sci. 136, 89-99.10.1016/S0376-7388(97)00176-2Search in Google Scholar

9. Walkowiak, W., Kozłowski, C.A., Pellowski, W. (2003). Zastosowanie polimerowych membran inkluzyjnych do wydzielania i separacji jonów metali. Membrany teoria i praktyka (pp. 47-78). Toruń, Poland, Wydawnictwo UMK.Search in Google Scholar

10. Kim, J.S., Kim, S.K. & Ko, J.W. (2000). Selective transport of cesium ion in polymeric VTA membrane containing calixcrown ethers. Talanta 52, 1143-1148.10.1016/S0039-9140(00)00489-6Search in Google Scholar

11. Sak ai, Y., Kadota, K. & Hayashita, T. (2010). The effect of the counter anion on the transport of thiourea in a PVC-based polymer inclusion membrane using Capriquat as carrier. J. Membr. Sci. 346(2), 250-255. DOI: 10.1016/j.memsci. 2009.09.038.10.1016/j.memsci.2009.09.038Open DOISearch in Google Scholar

12. Per eira, N., St. John, A. & Cattrall, R. (2009). Infl uence of composition of polymer inclusion membranes on their homogeneity and fl exibility. Desalination 236(1-3), 327-333. DOI: 10.1016/j.desal.2007.10.083.10.1016/j.desal.2007.10.083Open DOISearch in Google Scholar

13. Ngh iem, L.D., Mornane, P., Potter, I.D., Perera, J.M., Cattrall, R.W. & Kolev, S.D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 281(1-2), 7-41. DOI: 10.1016/j.memsci.2006.03.035.10.1016/j.memsci.2006.03.035Open DOISearch in Google Scholar

14. Lamb, J.D. & Nazarenko, A.Y. (1997). Lead(II) ion sorption and transport using polymer inclusion membranes containing tri-octylphosphine oxide. J. Membr. Sci. 134(2), 327-333. DOI: 10.1016/S0376-7388(97)00115-4.10.1016/S0376-7388(97)00115-4Open DOISearch in Google Scholar

15. Gaj da, B., Skrzypczak, A. & Bogacki, M.B. (2010). Separation of cobalt (II), nickel (II), zinck (II) and cadium (II) ions from chloride solutions. Physicochem. Probl. Miner. Process. 46, 289-294.Search in Google Scholar

16. Pos piech, B. & Walkowiak, W. (2007). Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Sep. Purif. Technol. 57(3), 461-465. DOI: 10.1016/j.seppur.2006.07.005.10.1016/j.seppur.2006.07.005Open DOISearch in Google Scholar

17. Alm eida, M. (2012). Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs).\ J. Membr. Sci. 416, 9-23. DOI: 10.1016/j.memsci.2012.06.00610.1016/j.memsci.2012.06.006Open DOISearch in Google Scholar

18. Mat sumoto, M., Takagi, T. & Kondo, K. (1998). Separation of lactic acid using polymeric membrane containing a mobile carrier. J. Ferment. Bioeng. 85(5), 483-487. DOI: 10.1016/ S0922-338X(98)80066-4.10.1016/S0922-338X(98)80066-4Open DOISearch in Google Scholar

19. Gaj ewski, P. & Bogacki, M.B. (2012). Infl uence of Alkyl Chain Length in 1-Alkylimidazol on the Citric Acid Transport Rate across Polymer Inclusion Membrane, Separ. Sci. Technol. 47, 1374-1382. DOI: 10.1080/01496395.2012.672517.10.1080/01496395.2012.672517Search in Google Scholar

20. Aro us, O., Saad Saoud, F. & Kerdjoudj, H. (2010). Cellulose triacetate properties and their effect on the thin fi lms morphology and performance. Innovations in Thin Film Processing and Characterisation. 17-20 November 2009, (pp. 1-5), Nancy, France.Search in Google Scholar

21. Munro, T.A. & Smithe, B.D. (1997). Facilitated transport of amino acids by fi xed-site jumping. Chem. Commun. 2167-2168.10.1039/a702390aOpen DOISearch in Google Scholar

22. Riggs, J.A. & Smith, B.D. (1997). Facilitated Transport of Small Carbohydrates through Plasticized Cellulose Triacetate. J. Am. Chem. Soc. 119(11), 2765-2766.10.1021/ja964103mSearch in Google Scholar

23. White, K.M., Smith, B.D., Duggan, P.J., Sheahan, S.L. & Tyndall, E.M. (2001). Mechanism of facilitated saccharide transport through plasticized cellulose triacetate membranes. J. Membr. Sci. 194, 165-175. 10.1016/S0376-7388(01)00487-2Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering