Accesso libero

Influence of the kind and concentration of ethoxylated alcohols on the transport of citric acid through polymer inclusion membranes

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Kristiansen, B., Mattey, M. & Linden, J. (2002). Citricacid biotechnology (1st ed.). Taylor and Francis.Search in Google Scholar

2. Dhillon, G.S., Brar, S.K. , Verma, M. & Tyagi, R.D. (2011). Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 4(4), 505-509. DOI: 10.1007/s11947-010-0399-0.10.1007/s11947-010-0399-0Open DOISearch in Google Scholar

3. Papanikolaou, S., Munigl ia, L., Chevalot, I., Aggelis, G. & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92 (4), 737-744. DOI: 10.1046/j.1365-2672.2002.01577.x.10.1046/j.1365-2672.2002.01577.xOpen DOISearch in Google Scholar

4. Rywińska, A., Rymowicz, W. , Żarowska, B. & Wojtatowicz, M. (2009). Biosynthesis of citric acid from glicerol by acetale mutants of Yarrowia lipolytica in fed-batch fermentation. FoodTechnol. Biotechnol. 47, 1-6.Search in Google Scholar

5. Soccol, C., Vandenberghe, L. & Rodrigues, C. (2008). Current Developments in solid-state fermentation. Productionof Organic Acids by Solid-state Fermentation, (pp. 205-229). Springer New York, Retrieved October, 2011, from Springer- Link, http://link.springer.com/book/10.1007/978-0-387-75213-6/ page/1. DOI: 10.1007/978-0-387-75213-6_10.10.1007/978-0-387-75213-6_10Open DOISearch in Google Scholar

6. da Silva, G.P., Mack, M. & Contiego, J. (2009). Glicerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27, 30-39. DOI: 10.1016/j.biotechadv. 2008.07.006.10.1016/j.biotechadv.2008.07.006Open DOISearch in Google Scholar

7. Kirsch, T., Ziegenfuss, H. & Maurer, G. (1997). Distribution of citric, acetic and oxalic acids between water and organic solutions of tri-n-octylamine. Fluid Phase Equilib. 129, 235-266.10.1016/S0378-3812(96)03154-8Search in Google Scholar

8. Juang, R.S., Huang, R.H. & Wu, R.T. (1997). Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes. J. Membr. Sci. 136, 89-99.10.1016/S0376-7388(97)00176-2Search in Google Scholar

9. Walkowiak, W., Kozłowski, C.A., Pellowski, W. (2003). Zastosowanie polimerowych membran inkluzyjnych do wydzielania i separacji jonów metali. Membrany teoria i praktyka (pp. 47-78). Toruń, Poland, Wydawnictwo UMK.Search in Google Scholar

10. Kim, J.S., Kim, S.K. & Ko, J.W. (2000). Selective transport of cesium ion in polymeric VTA membrane containing calixcrown ethers. Talanta 52, 1143-1148.10.1016/S0039-9140(00)00489-6Search in Google Scholar

11. Sak ai, Y., Kadota, K. & Hayashita, T. (2010). The effect of the counter anion on the transport of thiourea in a PVC-based polymer inclusion membrane using Capriquat as carrier. J. Membr. Sci. 346(2), 250-255. DOI: 10.1016/j.memsci. 2009.09.038.10.1016/j.memsci.2009.09.038Open DOISearch in Google Scholar

12. Per eira, N., St. John, A. & Cattrall, R. (2009). Infl uence of composition of polymer inclusion membranes on their homogeneity and fl exibility. Desalination 236(1-3), 327-333. DOI: 10.1016/j.desal.2007.10.083.10.1016/j.desal.2007.10.083Open DOISearch in Google Scholar

13. Ngh iem, L.D., Mornane, P., Potter, I.D., Perera, J.M., Cattrall, R.W. & Kolev, S.D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 281(1-2), 7-41. DOI: 10.1016/j.memsci.2006.03.035.10.1016/j.memsci.2006.03.035Open DOISearch in Google Scholar

14. Lamb, J.D. & Nazarenko, A.Y. (1997). Lead(II) ion sorption and transport using polymer inclusion membranes containing tri-octylphosphine oxide. J. Membr. Sci. 134(2), 327-333. DOI: 10.1016/S0376-7388(97)00115-4.10.1016/S0376-7388(97)00115-4Open DOISearch in Google Scholar

15. Gaj da, B., Skrzypczak, A. & Bogacki, M.B. (2010). Separation of cobalt (II), nickel (II), zinck (II) and cadium (II) ions from chloride solutions. Physicochem. Probl. Miner. Process. 46, 289-294.Search in Google Scholar

16. Pos piech, B. & Walkowiak, W. (2007). Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Sep. Purif. Technol. 57(3), 461-465. DOI: 10.1016/j.seppur.2006.07.005.10.1016/j.seppur.2006.07.005Open DOISearch in Google Scholar

17. Alm eida, M. (2012). Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs).\ J. Membr. Sci. 416, 9-23. DOI: 10.1016/j.memsci.2012.06.00610.1016/j.memsci.2012.06.006Open DOISearch in Google Scholar

18. Mat sumoto, M., Takagi, T. & Kondo, K. (1998). Separation of lactic acid using polymeric membrane containing a mobile carrier. J. Ferment. Bioeng. 85(5), 483-487. DOI: 10.1016/ S0922-338X(98)80066-4.10.1016/S0922-338X(98)80066-4Open DOISearch in Google Scholar

19. Gaj ewski, P. & Bogacki, M.B. (2012). Infl uence of Alkyl Chain Length in 1-Alkylimidazol on the Citric Acid Transport Rate across Polymer Inclusion Membrane, Separ. Sci. Technol. 47, 1374-1382. DOI: 10.1080/01496395.2012.672517.10.1080/01496395.2012.672517Search in Google Scholar

20. Aro us, O., Saad Saoud, F. & Kerdjoudj, H. (2010). Cellulose triacetate properties and their effect on the thin fi lms morphology and performance. Innovations in Thin Film Processing and Characterisation. 17-20 November 2009, (pp. 1-5), Nancy, France.Search in Google Scholar

21. Munro, T.A. & Smithe, B.D. (1997). Facilitated transport of amino acids by fi xed-site jumping. Chem. Commun. 2167-2168.10.1039/a702390aOpen DOISearch in Google Scholar

22. Riggs, J.A. & Smith, B.D. (1997). Facilitated Transport of Small Carbohydrates through Plasticized Cellulose Triacetate. J. Am. Chem. Soc. 119(11), 2765-2766.10.1021/ja964103mSearch in Google Scholar

23. White, K.M., Smith, B.D., Duggan, P.J., Sheahan, S.L. & Tyndall, E.M. (2001). Mechanism of facilitated saccharide transport through plasticized cellulose triacetate membranes. J. Membr. Sci. 194, 165-175. 10.1016/S0376-7388(01)00487-2Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering