Otwarty dostęp

Non-singular Fast Terminal Sliding Mode Control Integrated with Proportional Multi-Resonant-Based Controller for Multifunctional Grid-Tied LCL-Filtered Inverter

, , ,  oraz   
07 wrz 2025

Zacytuj
Pobierz okładkę

Figure 1.

Three-phase LCL-filtered GTI with the proposed control scheme. GTI, grid-tied inverter; HCC, hysteresis current controller.
Three-phase LCL-filtered GTI with the proposed control scheme. GTI, grid-tied inverter; HCC, hysteresis current controller.

Figure 2.

Steady-state waveforms of GTI (a) grid current (i2a, i2b, i2c) (b) load current (ila, ilb, ilc) (c) grid voltage (vga, vgb, vgc). GTI, grid-tied inverter.
Steady-state waveforms of GTI (a) grid current (i2a, i2b, i2c) (b) load current (ila, ilb, ilc) (c) grid voltage (vga, vgb, vgc). GTI, grid-tied inverter.

Figure 3.

Grid current (i2a, i2b, i2c) responses to the variation of reference grid current.
Grid current (i2a, i2b, i2c) responses to the variation of reference grid current.

Figure 4.

Fast Fourier transform of Grid-side current (i2a) for two different values of L2: (a) 20% decrease and (b) 500% increase. THD, total harmonic distortion.
Fast Fourier transform of Grid-side current (i2a) for two different values of L2: (a) 20% decrease and (b) 500% increase. THD, total harmonic distortion.

Figure 5.

Simulation results under distorted grid voltage conditions: (a) grid voltage (b) grid current.
Simulation results under distorted grid voltage conditions: (a) grid voltage (b) grid current.

Figure 6.

Load step change at t = 0.1 s. (a) load current (ila, ilb, ilc) and (b) grid current (i2a, i2b, i2c).
Load step change at t = 0.1 s. (a) load current (ila, ilb, ilc) and (b) grid current (i2a, i2b, i2c).

Figure 7.

Comparison of the proposed NTFSMC with ordinary SMC under step change. SMC, sliding mode controller.
Comparison of the proposed NTFSMC with ordinary SMC under step change. SMC, sliding mode controller.

Figure 8.

Fast Fourier transform of grid-side current (i2a) for Non-ideal DC voltage. THD, total harmonic distortion.
Fast Fourier transform of grid-side current (i2a) for Non-ideal DC voltage. THD, total harmonic distortion.

Figure 9.

Fast Fourier transform switching pulses (a) h = 2,000 (b) h = 1,000,000. THD, total harmonic distortion.
Fast Fourier transform switching pulses (a) h = 2,000 (b) h = 1,000,000. THD, total harmonic distortion.

Figure 10.

Non-symmetrical distortions in C phase. (a) non-symmetrical load and (b) sinusoidal grid current.
Non-symmetrical distortions in C phase. (a) non-symmetrical load and (b) sinusoidal grid current.

System parameters

System parameter Symbol Value
DC link voltage Vd 600 V
Grid voltage Vg 230 V (RMS)
Grid frequency fg 50 Hz
Sampling rate 0.2 μs
Inverter-side inductance L1 1.74 mH
Grid-side inductance L2 0.68 mH
Filter capacitance C 10 μF
Inductor’s resistance r1,2 0.2 Ω
Coefficient of NFTSMC α, β, k1, k2 1.8, 1.3, 300, 1
PMR gains Kp, Kr, k5, k7 10, 2,000, 2,000, 2,000
Bands of the hysteresis function h 2,000

Comparison of the proposed system with other works

Reference Huang et al. (2023) Zhang and Fei (2023) Sozanski and Szczesniak (2023) Proposed
Transient response performance Very high Very high Medium Very high
Robustness High High High Very high
PWM method PWM PWM PWM Hysteresis
Switching frequency 20 Khz Not reported 25.6 Khz Not fixed
Non-linear load performance Very high Very high Very high Very high
Complexity High High High Low
Computational burden Very high High High Low
Best grid THD 0.98 1.56 Not reported 0.33
Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Informatyka, Sztuczna inteligencja, Inżynieria, Elektrotechnika, Elektronika