This work is licensed under the Creative Commons Attribution 4.0 International License.
Brandstetter, P., and Dobrovsky, M. (2013). Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman Filter. Advances in Electrical and Electronic Engineering, 11(1), 22–28. doi:10.15598/aeee.v11i1.802.BrandstetterP.DobrovskyM.2013Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman FilterAdvances in Electrical and Electronic Engineering111222810.15598/aeee.v11i1.802Open DOISearch in Google Scholar
Chen, B., Gao, C., Zhang, L., Chen, J., Chen, J. and Li, Y. (2023). Optimal Control Algorithm for Subway Train Operation by Proximal Policy Optimization. Applied Science, 13, p. 7456. doi: 10.3390/app13137456ChenB.GaoC.ZhangL.ChenJ.ChenJ.LiY.2023Optimal Control Algorithm for Subway Train Operation by Proximal Policy OptimizationApplied Science13745610.3390/app13137456Open DOISearch in Google Scholar
Franke, R., Terwiesch, P. and Meyer, M. (2000). An Algorithm for the Optimal Control of the Driving of Train.FrankeR.TerwieschP.MeyerM.2000An Algorithm for the Optimal Control of the Driving of TrainSearch in Google Scholar
Ftorek, B., Saga, M., Orsansky, P., Vittek, J. and Butko, P. (2021). Energy Consumption Optimization for AC Drives Position Control. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 40(3), pp. 309–324. doi: 10.1108/COMPEL-10-2019-0429FtorekB.SagaM.OrsanskyP.VittekJ.ButkoP.2021Energy Consumption Optimization for AC Drives Position ControlThe International Journal for Computation and Mathematics in Electrical and Electronic Engineering40330932410.1108/COMPEL-10-2019-0429Open DOISearch in Google Scholar
Heineken, W., Richter, M. and Birth-Reichert, T. (2023). Energy-Efficient Train Driving Based on Optimal Control Theory. Energies, 16(18), p. 6712. doi: 10.3390/en16186712HeinekenW.RichterM.Birth-ReichertT.2023Energy-Efficient Train Driving Based on Optimal Control TheoryEnergies1618671210.3390/en16186712Open DOISearch in Google Scholar
Howlett, P. (2000). The Optimal Control of a Train. Annals of Operations Research, 98, pp. 65–87. doi: 10.1023/A:1019235819716HowlettP.2000The Optimal Control of a TrainAnnals of Operations Research98658710.1023/A:1019235819716Open DOISearch in Google Scholar
Ichikawa, K. (1968). Application of Optimization Theory for Bounded State Variable Problems to the Operation of Train. Bulletin of Japanese Mechanical Engineering, 11, pp. 857–865. doi: 10.1299/jsme1958.11.857IchikawaK.1968Application of Optimization Theory for Bounded State Variable Problems to the Operation of TrainBulletin of Japanese Mechanical Engineering1185786510.1299/jsme1958.11.857Open DOISearch in Google Scholar
Novotny, D. W. and Lipo, T. A. (1996). Vector Control and Dynamics of AC Drives. Oxford: Clarendon Press.NovotnyD. W.LipoT. A.1996Vector Control and Dynamics of AC DrivesOxfordClarendon PressSearch in Google Scholar
Orlowska-Kowalska, T. and Dybkowski, M. (2016). Industrial Drive Systems. Current State and Development Trends. Power Electronics and Drives, 36(1), pp. 5–25. doi: 10.5277/PED160101Orlowska-KowalskaT.DybkowskiM.2016Industrial Drive Systems. Current State and Development TrendsPower Electronics and Drives36152510.5277/PED160101Open DOISearch in Google Scholar
Perdukova, D., Fedor, P. and Timko, J. (2004). Modern Methods of Complex Drives Control. Acta Technica CSAV, 49(1), pp. 31–45. ISSN 0001-7043.PerdukovaD.FedorP.TimkoJ.2004Modern Methods of Complex Drives ControlActa Technica CSAV4913145ISSN 0001-7043.Search in Google Scholar
Ping, L. K., You, G. Z. and Hua, M. B. (2023). Energy Optimal Control Model for Train Movements. Chinese Physics, 16, p. 359. doi: 10.1088/1009-1963/16/2/015PingL. K.YouG. Z.HuaM. B.2023Energy Optimal Control Model for Train MovementsChinese Physics1635910.1088/1009-1963/16/2/015Open DOISearch in Google Scholar
Pontryagin, L. S. (2018) Mathematical Theory of Optimal Processes. Routledge, Abingdon-on-Thames. doi: 10.1201/9780203749319.PontryaginL. S.2018Mathematical Theory of Optimal ProcessesRoutledgeAbingdon-on-Thames10.1201/9780203749319Open DOISearch in Google Scholar
Su, S., Tang, T. and Wang, Y. (2016). Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies, 9(2), p. 105. doi: 10.3390/en9020105SuS.TangT.WangY.2016Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation ModelEnergies9210510.3390/en9020105Open DOISearch in Google Scholar
Tolle, H. (1975). Optimization Methods. Berlin: Springer-Verlag.TolleH.1975Optimization MethodsBerlinSpringer-VerlagSearch in Google Scholar
Vittek, J., Butko, P., Ftorek, B., Makyš, P. and Gorel, L. (2017a). Energy Near-Optimal Control Strategies for Industrial and Traction Drives with A.C. Motors. Mathematical Problems in Engineering, 2017, pp. 1–22. doi: 10.1155/2017/1857186VittekJ.ButkoP.FtorekB.MakyšP.GorelL.2017aEnergy Near-Optimal Control Strategies for Industrial and Traction Drives with A.C. MotorsMathematical Problems in Engineering201712210.1155/2017/1857186Open DOISearch in Google Scholar
Vittek, J., Gorel, L., Vavrúš, V. and Struharňanský, L. (2017b). Position Tracking Systems for AC Drives Employing Forced Dynamics Control. Power Electronics and Drives, 37(2), pp. 89–103. doi: 10.5277/PED170110VittekJ.GorelL.VavrúšV.StruharňanskýL.2017bPosition Tracking Systems for AC Drives Employing Forced Dynamics ControlPower Electronics and Drives3728910310.5277/PED170110Open DOISearch in Google Scholar