1. bookTom 29 (2021): Zeszyt 2 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2061-9588
Pierwsze wydanie
08 Oct 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

The wing phalanges (Phalanx proximalis digiti majoris) of European Accipitriformes and Falconiformes

Data publikacji: 29 Nov 2021
Tom & Zeszyt: Tom 29 (2021) - Zeszyt 2 (December 2021)
Zakres stron: 93 - 106
Otrzymano: 09 Oct 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2061-9588
Pierwsze wydanie
08 Oct 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

The authors compared the first phalanx of the second wing finger of 33 European diurnal raptors. The importance of studying this bone lies in the fact that, although it has diagnosable characteristics, it was practically neglected by osteologists and paleontologists. Thus, fossil materials can be identified through them, as well as those from owl pellets. The comparison was made possible by the comparative avian skeleton collection of the Hungarian Natural History Museum. In a preliminary investigation we examined the morphological diversity of the first phalanx of the second wing finger among the different species. We used principal component (PC) analyses on measurements. The PC described the curvature of the anterior surface of the bone and the relative size of the distal and proximal epiphyses. The principal component analysis showed slightly overlapping in shape between the taxons but the accipitriform and falconiform birds diverged in the morphospace. The attributes and geometry of the first phalanx of the second wing finger reflects more on taxonomic background than flying behaviour. The avian wing is a complex and highly modulable structure, therefore, probably body mass and size affect flying performance than the other morphological features of this bone. The text is supplemented by 6 figures and one size table.

Keywords

Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. P. & Hellgren, O. 2007. Flight speeds among bird species: allometric and phylogenetic effects. – PLoS Biology 5(8): e197. DOI: 10.1371/journal.pbio.005019710.1371/journal.pbio.0050197191407117645390 Search in Google Scholar

Baumel, J. J., King, A. S., Lucas, A. M., Breazile, J. E. & Evans, H. E. 1979. Nomina anatomica avium. – Academical Press, London Search in Google Scholar

Cheney, J. A., Stevenson, J. P., Durston, N. E., Maeda, M., Song, J., Megson-Smith, D. A., Windsor, S. P., Usherwood, R. P. & Bomphrey, R. J. 2021. Raptor wing morphing with flight speed. – Journal of the Royal Society Interface 18(180): 20210349. DOI: 10.1098/rsif.2021.034910.1098/rsif.2021.0349827746534255986 Search in Google Scholar

Cohen, A. & Serjeantson, D. 1996. A manual for the identification of bird bones from archaeological sites (revised ed.). – Archetype Publications, London Search in Google Scholar

Gilbert, B. M., Martin, L. D. & Savage, H. G. 1981. Avian Osteology. – Library of Congress, Wyoming Search in Google Scholar

Gill, F., Donsker, D. & Rasmussen, P. (eds.) 2020. IOC World Bird List. – DOI: 10.14344/IOC.ML.10.2.10.14344/IOC.ML.10.2 Search in Google Scholar

Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. – Palaeontologia Electronica 4: 1–9. Search in Google Scholar

Hieronymus, T. L. 2016. Flight feather attachment in Rock Pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing. – Journal of Anatomy 229(5): 631–656. DOI: 10.1111/joa.1251110.1111/joa.12511505508727320170 Search in Google Scholar

Kessler, E. 2013. A Kárpát-medence madárvilágának őslénytani kézikönyve [Paleontological Handbook of Birdlife in Carpathian Basin]. – Könyvműhely, Miskolc (in Hungarian) Search in Google Scholar

Kessler, J. (E.) 2015. Osteological guide of songbirds from Central Europe. – Ornis Hungarica 23(2): 62–156. DOI: 10.1515/orhu-2015-000910.1515/orhu-2015-0009 Search in Google Scholar

Kessler, J. (E.) 2016a Picidae in the European fossil, subfossil and recent bird faunas and their osteological characteristics. – Ornis Hungarica 24(1): 96–114. DOI: 10.1515/orhu-2016-000910.1515/orhu-2016-0009 Search in Google Scholar

Kessler, J. (E.) 2016b Evolution and skeletal characteristics of European owls. – Ornis Hungarica 24(2): 65–103. DOI: 10.1515/orhu-2016-000910.1515/orhu-2016-0009 Search in Google Scholar

Kessler, J. (E.) 2019. Pigeons, sandgrouse, cuckoos, nightjars, rollers, bee-eaters, kingfishers and swifts in the European fossil avifauna and their osteological characteristics. – Ornis Hungarica 27(1): 132–165. DOI: 10.2478/orhu-2019-000910.2478/orhu-2019-0009 Search in Google Scholar

Kessler, J. (E.) 2020. Evolution of Corvids and their presence in the Neogene and the Quaternary in the Carpathian Basin. – Ornis Hungarica 28(1): 121–168. DOI: 10.2478/orhu-2020-000910.2478/orhu-2020-0009 Search in Google Scholar

Kessler, J. (E.) & Horváth, I. 2020.The wing phalanges (phalanx proximalis digiti majoris) of Gaviiformes, Podicipediformes, Pelecaniformes, Ardeiformes, Anseriformes, Gruiformes, Ralliformes, Charadriiformes, and Galliformes. – Ornis Hungarica 29(1): 149–169. DOI: 10.2478/orhu-2021-001210.2478/orhu-2021-0012 Search in Google Scholar

Klaassen van Oorschot, B., Mistick, E. A. & Tobalske, B. W. 2016. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds. – Journal of Experimental Biology 219(19): 3146–3154. DOI: 10.1242/jeb.13672110.1242/jeb.13672127473437 Search in Google Scholar

Krishnan, K., Ben-Gida, H., Morgan, G., Kopp, G. A., Guglielmo, C. G. & Gurka, R. 2020. Turbulent wake-flow characteristics in the near wake of freely flying raptors: a comparative analysis between an owl and a hawk. – Integrative and Comparative Biology 60(5): 1109–1122. DOI: 10.1093/icb/icaa10610.1093/icb/icaa10632697833 Search in Google Scholar

Milne-Edwards, A. 1867–1868. Recherches anatomiques et paléontologiques pour servir àl’histoire des oiseaux fossiles de la France,Vol. 1. [Anatomical and paleontological research to be used in the history of the fossil birds of France, Vol. 1.]. – Paris: Victor Masson et Fils (in French)10.5962/bhl.title.70900 Search in Google Scholar

Rohlf, F. J. 2010. TpsDig, version 2.16. – Department of Ecology and Evolution, State University of New York, Stony Brook, USA Search in Google Scholar

Solti, B. 1980. Beiträge zur Kenntnis der Osteologie des Gerfalken (Falco rusticolus L., 1758) [Contributions to the knowledge of the osteology of the Gyrfalcon (Falco rusticolus L., 1758)]. – Folia Historico-Naturalia Musei Matraensis 6: 189–204. (in German) Search in Google Scholar

Solti, B. 1981a Vergleichend-osteologische Untersuchungen am Skelettsystem der Falkenarten Falco cherrug Gary und Falco peregrinus Tunstall [Comparative osteological studies on the skeletal system of the falcon species Falco cherrug Gary and Falco peregrinus Tunstall]. – Vertebrata Hungarica 20: 75–125. (in German) Search in Google Scholar

Solti, B. 1981b Osteologische Untersuchungen an Falco biarmicus Temminck, 1825 [Osteological investigations on Falco biarmicus Temminck, 1825]. – Folia Historico-Naturalia Musei Matraensis 7: 135–151. (in German) Search in Google Scholar

Solti, B. 1996. The comparative osteomorphological study of the European small-statured falcons (Aves: Falconidae). – Folia Historico-Naturalia Musei Matraensis 21: 5–282. Search in Google Scholar

Spaar, R. 1997. Flight strategies of migrating raptors; a comparative study of interspecific variation in flight characteristics. – Ibis 139(3): 523–535. DOI: 10.1111/j.1474-919X.1997.tb04669.x10.1111/j.1474-919X.1997.tb04669.x Search in Google Scholar

Usherwood, J. R., Cheney, J. A., Song, J., Windsor, S. P., Stevenson, J. P., Dierksheide, U., Nilla, A. & Bomphrey, R. J. 2020. High aerodynamic lift from the tail reduces drag in gliding raptors. – Journal of Experimental Biology 223(3): jeb214809. DOI: 10.1242/jeb.21480910.1242/jeb.214809703373232041775 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo