Otwarty dostęp

Decomposition of diclofenac in sewage from municipal wastewater treatment plant using ionizing radiation


Zacytuj

Acuna, V., Ginebreda, A., Mor, J. R., Petrovic, M., Sabater, S., Sumpter, J., & Barcelo, D. (2015). Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example. Environ. Int., 85, 327–333. doi.org/10.1016/j.envint.2015.09.023. AcunaV. GinebredaA. MorJ. R. PetrovicM. SabaterS. SumpterJ. BarceloD. 2015 Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example Environ. Int. 85 327 333 doi.org/10.1016/j.envint.2015.09.023. 10.1016/j.envint.2015.09.023 Search in Google Scholar

Yan, J., Zhang, X., Lin, W., Yang, W., & Ren, Y. (2019). Adsorption behavior of diclofenac-containing wastewater on three kinds of sewage sludge. Water Sci. Technol., 80, 717–726. doi.org/10.2166/wst.2019.315. YanJ. ZhangX. LinW. YangW. RenY. 2019 Adsorption behavior of diclofenac-containing wastewater on three kinds of sewage sludge Water Sci. Technol. 80 717 726 doi.org/10.2166/wst.2019.315. 10.2166/wst.2019.315 Search in Google Scholar

Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., & Siegrist, H. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res., 39, 3139–3152. doi.org/10.1016/j.watres.2005.05.031. JossA. KellerE. AlderA. C. GöbelA. McArdellC. S. TernesT. SiegristH. 2005 Removal of pharmaceuticals and fragrances in biological wastewater treatment Water Res. 39 3139 3152 doi.org/10.1016/j.watres.2005.05.031. 10.1016/j.watres.2005.05.031 Search in Google Scholar

Quintana, J. B., Weiss, S., & Reemtsma, T. (2005). Pathway's and metabolites of microbial degradation of selected pharmaceutical and their occurrence in municipal wastewater treated by membrane bioreactor. Water Res., 39, 2654–2664. doi.org/10.1016/j.watres.2005.04.068. QuintanaJ. B. WeissS. ReemtsmaT. 2005 Pathway's and metabolites of microbial degradation of selected pharmaceutical and their occurrence in municipal wastewater treated by membrane bioreactor Water Res. 39 2654 2664 doi.org/10.1016/j.watres.2005.04.068. 10.1016/j.watres.2005.04.068 Search in Google Scholar

Jallouli, N., Pastrana-Martinez, L. M., Ribeiro, A. R., Morelra, N. F. F., Faria, J. L., Hentati, O., Silva, A. M. T., & Ksibi, M. (2018). Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewater using TiO2/UV-LED system. Chem. Eng. J., 334, 976–984. doi.org/10.1016/j.cej.2017.10.045. JallouliN. Pastrana-MartinezL. M. RibeiroA. R. MorelraN. F. F. FariaJ. L. HentatiO. SilvaA. M. T. KsibiM. 2018 Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewater using TiO2/UV-LED system Chem. Eng. J. 334 976 984 doi.org/10.1016/j.cej.2017.10.045. 10.1016/j.cej.2017.10.045 Search in Google Scholar

Aziz, K. H. H., Miessner, H., Mueller, S., Kalass, D., Moeller, D., Khorshid, J., & Rashid, M. A. M. (2017). Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J., 313, 1033–1041. doi.org/10.1016/j.cej.2016.10.137. AzizK. H. H. MiessnerH. MuellerS. KalassD. MoellerD. KhorshidJ. RashidM. A. M. 2017 Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma Chem. Eng. J. 313 1033 1041 doi.org/10.1016/j.cej.2016.10.137. 10.1016/j.cej.2016.10.137 Search in Google Scholar

Liu, X. X., Zhou, Y. Y., Zhang, J. C., Luo, L., Yong, Y., Huang, H. L., Peng, H., Tang, L., & Mu, Y. (2018). Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chem. Eng. J., 347, 379–397. doi.org/10.1016/j.cej.2018.04.142. LiuX. X. ZhouY. Y. ZhangJ. C. LuoL. YongY. HuangH. L. PengH. TangL. MuY. 2018 Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps Chem. Eng. J. 347 379 397 doi.org/10.1016/j.cej.2018.04.142. 10.1016/j.cej.2018.04.142 Search in Google Scholar

Pan, M., & Chu, L. M. (2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ., 545, 48–56. doi.org/10.1016/j.scitotenv.2015.12.040. PanM. ChuL. M. 2016 Adsorption and degradation of five selected antibiotics in agricultural soil Sci. Total Environ. 545 48 56 doi.org/10.1016/j.scitotenv.2015.12.040. 10.1016/j.scitotenv.2015.12.040 Search in Google Scholar

He, X., Mezyk, S. P., Michael, I., Fatta Kassinos, D., & Dionysiou, D. D. (2014). Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation. J. Hazard. Mat., 279, 375–383. doi.org/10.1016/j.jhazmat.2014.07.008. HeX. MezykS. P. MichaelI. Fatta KassinosD. DionysiouD. D. 2014 Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation J. Hazard. Mat. 279 375 383 doi.org/10.1016/j.jhazmat.2014.07.008. 10.1016/j.jhazmat.2014.07.008 Search in Google Scholar

Elomlla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin, and cloxacillin antibiotics in aqueous using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252, 46–52. doi.org/10.1016/j.desal.2009.11.003. ElomllaE. S. ChaudhuriM. 2010 Photocatalytic degradation of amoxicillin, ampicillin, and cloxacillin antibiotics in aqueous using UV/TiO2 and UV/H2O2/TiO2 photocatalysis Desalination 252 46 52 doi.org/10.1016/j.desal.2009.11.003. 10.1016/j.desal.2009.11.003 Search in Google Scholar

Wang, J. L., Zhuan, R., & Chu, L. B. (2019). The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ., 646, 1385–1397. doi.org/10.1016/j.scitotenv.2018.07.415. WangJ. L. ZhuanR. ChuL. B. 2019 The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview Sci. Total Environ. 646 1385 1397 doi.org/10.1016/j.scitotenv.2018.07.415. 10.1016/j.scitotenv.2018.07.415 Search in Google Scholar

Szabo, L., Toth, T., Homlok, R., Takacs, E., & Wojnarovits, L. (2012). Radiolysis of paracetamol in dilute aqueous solution. Radiat. Phys. Chem., 81, 1503–1507. doi.org/10.1016/j.radphyschem.2011.11.036. SzaboL. TothT. HomlokR. TakacsE. WojnarovitsL. 2012 Radiolysis of paracetamol in dilute aqueous solution Radiat. Phys. Chem. 81 1503 1507 doi.org/10.1016/j.radphyschem.2011.11.036. 10.1016/j.radphyschem.2011.11.036 Search in Google Scholar

Shao, H. Y., Wu, M. H., Deng, F., Xu, G., Liu, N., Li, X., & Tang, L. (2018). Electron beam irradiation induced degradation of antidepressant drug fluoxetine in water matrices. Chemosphere, 190, 184–190. doi.org/10.1016/j.chemosphere.2017.09.133. ShaoH. Y. WuM. H. DengF. XuG. LiuN. LiX. TangL. 2018 Electron beam irradiation induced degradation of antidepressant drug fluoxetine in water matrices Chemosphere 190 184 190 doi.org/10.1016/j.chemosphere.2017.09.133. 10.1016/j.chemosphere.2017.09.133 Search in Google Scholar

Kimura, A., Osawa, A. M., & Taguchi, M. (2012). Decomposition of persistent pharmaceuticals in waste water by ionizing radiation. Radiat. Phys. Chem., 81, 1508–1512. doi.org/10.1016/j.radphyschem.2011.11.032. KimuraA. OsawaA. M. TaguchiM. 2012 Decomposition of persistent pharmaceuticals in waste water by ionizing radiation Radiat. Phys. Chem. 81 1508 1512 doi.org/10.1016/j.radphyschem.2011.11.032. 10.1016/j.radphyschem.2011.11.032 Search in Google Scholar

Zhang, Z. L., Chen, H., Wang, J. L., & Zhang, Y. X. (2020). Degradation of carbamazepine by combined radiation and persulfate oxidation process. Radiat. Phys. Chem., 170, 108639–108644. doi.org/10.1016/j.radphyschem.2019.108639. ZhangZ. L. ChenH. WangJ. L. ZhangY. X. 2020 Degradation of carbamazepine by combined radiation and persulfate oxidation process Radiat. Phys. Chem. 170 108639 108644 doi.org/10.1016/j.radphyschem.2019.108639. 10.1016/j.radphyschem.2019.108639 Search in Google Scholar

Bojanowska-Czajka, A., Kciuk, G., Gumiela, M., Borowiecka, S., Nałęcz-Jawecki, G., Koc, A., Garcia-Reyes, J. F., Solpan-Ozbay, D., & Trojanowicz, M. (2015). Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation. Environ. Sci. Pollut. Res., 22, 20255–20270. doi.org/10.1007/s11356-015-5236-6. Bojanowska-CzajkaA. KciukG. GumielaM. BorowieckaS. Nałęcz-JaweckiG. KocA. Garcia-ReyesJ. F. Solpan-OzbayD. TrojanowiczM. 2015 Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation Environ. Sci. Pollut. Res. 22 20255 20270 doi.org/10.1007/s11356-015-5236-6. 10.1007/s11356-015-5236-6 Search in Google Scholar

Homolok, R., Takacs, E., & Wojnarovits, L. (2011). Elimination of diclofenac from water using irradiation technology. Chemosphere, 85, 603–608. doi.org/10.1016/j.chemosphere.2011.06.101. HomolokR. TakacsE. WojnarovitsL. 2011 Elimination of diclofenac from water using irradiation technology Chemosphere 85 603 608 doi.org/10.1016/j.chemosphere.2011.06.101. 10.1016/j.chemosphere.2011.06.101 Search in Google Scholar

Liu, Q., Luo, X., Zheng, Z., Zheng, B., Zhang, J., Zhao, Y., Yang, X., & Wang, I. (2011) Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation. Environ. Sci. Pollut. Res., 18, 1243–1252. DOI: 10.1007/s11356-011-0457-9. LiuQ. LuoX. ZhengZ. ZhengB. ZhangJ. ZhaoY. YangX. WangI. 2011 Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation Environ. Sci. Pollut. Res. 18 1243 1252 10.1007/s11356-011-0457-9 Open DOISearch in Google Scholar

He, S. J., Wang, J. L., Ye, L. F., Zhang, Y. X., & Yu, J. (2014). Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter. Radiat. Phys. Chem., 105, 104–108. doi.org/10.1016/j.radphyschem.2014.05.019. HeS. J. WangJ. L. YeL. F. ZhangY. X. YuJ. 2014 Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter Radiat. Phys. Chem. 105 104 108 doi.org/10.1016/j.radphyschem.2014.05.019. 10.1016/j.radphyschem.2014.05.019 Search in Google Scholar

Bianchini, A., Bonfigliolo, L., Pellegrini, M., & Saccani, C. (2016). Sewage sludge management in Europe: A critical analysis of data quality. Int J. Environ. Waste Manag., 18, 226–238. DOI: 10.1504/IJEWM.2016.080795. BianchiniA. BonfiglioloL. PellegriniM. SaccaniC. 2016 Sewage sludge management in Europe: A critical analysis of data quality Int J. Environ. Waste Manag. 18 226 238 10.1504/IJEWM.2016.080795 Open DOISearch in Google Scholar

Collivignarelly, M. C., Abbà, A., Frattarola, A., Miino, M. C., Padovani, S., Katsoyiannis, I., & Torretta, V. (2019). Legislation for the reuse of bosolids on agricultural land in Europe: Overview. Sustainability, 11, 6015. DOI: 10.3390/su11216015. CollivignarellyM. C. AbbàA. FrattarolaA. MiinoM. C. PadovaniS. KatsoyiannisI. TorrettaV. 2019 Legislation for the reuse of bosolids on agricultural land in Europe: Overview Sustainability 11 6015 10.3390/su11216015 Open DOISearch in Google Scholar

Hudcova, H., Vymazal, J., & Rozkosny, M. (2019). Present restriction of sewage sludge application in agriculture within the European Union. Soil Water Res., 14, 104–120. doi.org/10.17221/36/2018-SWR. HudcovaH. VymazalJ. RozkosnyM. 2019 Present restriction of sewage sludge application in agriculture within the European Union Soil Water Res. 14 104 120 doi.org/10.17221/36/2018-SWR. 10.17221/36/2018-SWR Search in Google Scholar

Chmielewski, A. G., & Sudlitz, M. (2019). ‘Zero energy’ electron beam technology for sludge hygienization. Nukleonika, 64, 55–63. DOI: 10.2478/nuka-2019-0007. ChmielewskiA. G. SudlitzM. 2019 ‘Zero energy’ electron beam technology for sludge hygienization Nukleonika 64 55 63 10.2478/nuka-2019-0007 Open DOISearch in Google Scholar

Zuloaga, O., Navarro, P., Bizarguenaga, E., Iparraguirre, A., Vallejo, A., Olivares, M., & Prieto, A. (2012). Overview of extraction, clean up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Anal. Chim. Acta, 736, 7–29. doi.org/10.1016/j.aca.2012.05.016. ZuloagaO. NavarroP. BizarguenagaE. IparraguirreA. VallejoA. OlivaresM. PrietoA. 2012 Overview of extraction, clean up and detection techniques for the determination of organic pollutants in sewage sludge: A review Anal. Chim. Acta 736 7 29 doi.org/10.1016/j.aca.2012.05.016. 10.1016/j.aca.2012.05.016 Search in Google Scholar

Yu, H., Nie, E., Xu, J., Yan, S., Cooper, W. J., & Song, W. (2013). Degradation of diclofenac by advanced oxidation and reduction process: kinetic studies, degradation pathways and toxicity assessments. Water Res., 47, 1909–1918. doi.org/10.1016/j.watres.2013.01.016. YuH. NieE. XuJ. YanS. CooperW. J. SongW. 2013 Degradation of diclofenac by advanced oxidation and reduction process: kinetic studies, degradation pathways and toxicity assessments Water Res. 47 1909 1918 doi.org/10.1016/j.watres.2013.01.016. 10.1016/j.watres.2013.01.016 Search in Google Scholar

Basfar, A. A., Mohammed, K. A., Al-Abduly, A. J., & Al-Shahvani, A. A. (2009). Radiolytic degradation of atrazine aqueous solution containing humic substances. Ecotox. Environ. Safety, 72, 948–953. DOI: 10.1016/j.ecoenv.2008.05.006. BasfarA. A. MohammedK. A. Al-AbdulyA. J. Al-ShahvaniA. A. 2009 Radiolytic degradation of atrazine aqueous solution containing humic substances Ecotox. Environ. Safety 72 948 953 10.1016/j.ecoenv.2008.05.006 Open DOISearch in Google Scholar

Zhuan, R., & Wang, J. (2020). Degradation of diclofenac in aqueous solution by ionizing radiation in the presence of humic acid. Sep. Purif. Technol., 234, 116079–116086. doi.org/10.1016/j.seppur.2019.116079. ZhuanR. WangJ. 2020 Degradation of diclofenac in aqueous solution by ionizing radiation in the presence of humic acid Sep. Purif. Technol. 234 116079 116086 doi.org/10.1016/j.seppur.2019.116079. 10.1016/j.seppur.2019.116079 Search in Google Scholar

Christensen, H., Sehested, K., & Logager, T. (1994). Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH, H2O2. Radiat. Phys. Chem., 43, 527–532. doi.org/10.1016/0969-806X(94)90163-5. ChristensenH. SehestedK. LogagerT. 1994 Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH, H2O2 Radiat. Phys. Chem. 43 527 532 doi.org/10.1016/0969-806X(94)90163-5. 10.1016/0969-806X(94)90163-5 Search in Google Scholar

eISSN:
1508-5791
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemia, Chemia nuklearna, Fizyka, Astronomia i astrofizyka, inne