Accesso libero

Decomposition of diclofenac in sewage from municipal wastewater treatment plant using ionizing radiation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Acuna, V., Ginebreda, A., Mor, J. R., Petrovic, M., Sabater, S., Sumpter, J., & Barcelo, D. (2015). Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example. Environ. Int., 85, 327–333. doi.org/10.1016/j.envint.2015.09.023. AcunaV. GinebredaA. MorJ. R. PetrovicM. SabaterS. SumpterJ. BarceloD. 2015 Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example Environ. Int. 85 327 333 doi.org/10.1016/j.envint.2015.09.023. 10.1016/j.envint.2015.09.023 Search in Google Scholar

Yan, J., Zhang, X., Lin, W., Yang, W., & Ren, Y. (2019). Adsorption behavior of diclofenac-containing wastewater on three kinds of sewage sludge. Water Sci. Technol., 80, 717–726. doi.org/10.2166/wst.2019.315. YanJ. ZhangX. LinW. YangW. RenY. 2019 Adsorption behavior of diclofenac-containing wastewater on three kinds of sewage sludge Water Sci. Technol. 80 717 726 doi.org/10.2166/wst.2019.315. 10.2166/wst.2019.315 Search in Google Scholar

Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., & Siegrist, H. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res., 39, 3139–3152. doi.org/10.1016/j.watres.2005.05.031. JossA. KellerE. AlderA. C. GöbelA. McArdellC. S. TernesT. SiegristH. 2005 Removal of pharmaceuticals and fragrances in biological wastewater treatment Water Res. 39 3139 3152 doi.org/10.1016/j.watres.2005.05.031. 10.1016/j.watres.2005.05.031 Search in Google Scholar

Quintana, J. B., Weiss, S., & Reemtsma, T. (2005). Pathway's and metabolites of microbial degradation of selected pharmaceutical and their occurrence in municipal wastewater treated by membrane bioreactor. Water Res., 39, 2654–2664. doi.org/10.1016/j.watres.2005.04.068. QuintanaJ. B. WeissS. ReemtsmaT. 2005 Pathway's and metabolites of microbial degradation of selected pharmaceutical and their occurrence in municipal wastewater treated by membrane bioreactor Water Res. 39 2654 2664 doi.org/10.1016/j.watres.2005.04.068. 10.1016/j.watres.2005.04.068 Search in Google Scholar

Jallouli, N., Pastrana-Martinez, L. M., Ribeiro, A. R., Morelra, N. F. F., Faria, J. L., Hentati, O., Silva, A. M. T., & Ksibi, M. (2018). Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewater using TiO2/UV-LED system. Chem. Eng. J., 334, 976–984. doi.org/10.1016/j.cej.2017.10.045. JallouliN. Pastrana-MartinezL. M. RibeiroA. R. MorelraN. F. F. FariaJ. L. HentatiO. SilvaA. M. T. KsibiM. 2018 Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewater using TiO2/UV-LED system Chem. Eng. J. 334 976 984 doi.org/10.1016/j.cej.2017.10.045. 10.1016/j.cej.2017.10.045 Search in Google Scholar

Aziz, K. H. H., Miessner, H., Mueller, S., Kalass, D., Moeller, D., Khorshid, J., & Rashid, M. A. M. (2017). Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J., 313, 1033–1041. doi.org/10.1016/j.cej.2016.10.137. AzizK. H. H. MiessnerH. MuellerS. KalassD. MoellerD. KhorshidJ. RashidM. A. M. 2017 Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma Chem. Eng. J. 313 1033 1041 doi.org/10.1016/j.cej.2016.10.137. 10.1016/j.cej.2016.10.137 Search in Google Scholar

Liu, X. X., Zhou, Y. Y., Zhang, J. C., Luo, L., Yong, Y., Huang, H. L., Peng, H., Tang, L., & Mu, Y. (2018). Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chem. Eng. J., 347, 379–397. doi.org/10.1016/j.cej.2018.04.142. LiuX. X. ZhouY. Y. ZhangJ. C. LuoL. YongY. HuangH. L. PengH. TangL. MuY. 2018 Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps Chem. Eng. J. 347 379 397 doi.org/10.1016/j.cej.2018.04.142. 10.1016/j.cej.2018.04.142 Search in Google Scholar

Pan, M., & Chu, L. M. (2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ., 545, 48–56. doi.org/10.1016/j.scitotenv.2015.12.040. PanM. ChuL. M. 2016 Adsorption and degradation of five selected antibiotics in agricultural soil Sci. Total Environ. 545 48 56 doi.org/10.1016/j.scitotenv.2015.12.040. 10.1016/j.scitotenv.2015.12.040 Search in Google Scholar

He, X., Mezyk, S. P., Michael, I., Fatta Kassinos, D., & Dionysiou, D. D. (2014). Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation. J. Hazard. Mat., 279, 375–383. doi.org/10.1016/j.jhazmat.2014.07.008. HeX. MezykS. P. MichaelI. Fatta KassinosD. DionysiouD. D. 2014 Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation J. Hazard. Mat. 279 375 383 doi.org/10.1016/j.jhazmat.2014.07.008. 10.1016/j.jhazmat.2014.07.008 Search in Google Scholar

Elomlla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin, and cloxacillin antibiotics in aqueous using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252, 46–52. doi.org/10.1016/j.desal.2009.11.003. ElomllaE. S. ChaudhuriM. 2010 Photocatalytic degradation of amoxicillin, ampicillin, and cloxacillin antibiotics in aqueous using UV/TiO2 and UV/H2O2/TiO2 photocatalysis Desalination 252 46 52 doi.org/10.1016/j.desal.2009.11.003. 10.1016/j.desal.2009.11.003 Search in Google Scholar

Wang, J. L., Zhuan, R., & Chu, L. B. (2019). The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ., 646, 1385–1397. doi.org/10.1016/j.scitotenv.2018.07.415. WangJ. L. ZhuanR. ChuL. B. 2019 The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview Sci. Total Environ. 646 1385 1397 doi.org/10.1016/j.scitotenv.2018.07.415. 10.1016/j.scitotenv.2018.07.415 Search in Google Scholar

Szabo, L., Toth, T., Homlok, R., Takacs, E., & Wojnarovits, L. (2012). Radiolysis of paracetamol in dilute aqueous solution. Radiat. Phys. Chem., 81, 1503–1507. doi.org/10.1016/j.radphyschem.2011.11.036. SzaboL. TothT. HomlokR. TakacsE. WojnarovitsL. 2012 Radiolysis of paracetamol in dilute aqueous solution Radiat. Phys. Chem. 81 1503 1507 doi.org/10.1016/j.radphyschem.2011.11.036. 10.1016/j.radphyschem.2011.11.036 Search in Google Scholar

Shao, H. Y., Wu, M. H., Deng, F., Xu, G., Liu, N., Li, X., & Tang, L. (2018). Electron beam irradiation induced degradation of antidepressant drug fluoxetine in water matrices. Chemosphere, 190, 184–190. doi.org/10.1016/j.chemosphere.2017.09.133. ShaoH. Y. WuM. H. DengF. XuG. LiuN. LiX. TangL. 2018 Electron beam irradiation induced degradation of antidepressant drug fluoxetine in water matrices Chemosphere 190 184 190 doi.org/10.1016/j.chemosphere.2017.09.133. 10.1016/j.chemosphere.2017.09.133 Search in Google Scholar

Kimura, A., Osawa, A. M., & Taguchi, M. (2012). Decomposition of persistent pharmaceuticals in waste water by ionizing radiation. Radiat. Phys. Chem., 81, 1508–1512. doi.org/10.1016/j.radphyschem.2011.11.032. KimuraA. OsawaA. M. TaguchiM. 2012 Decomposition of persistent pharmaceuticals in waste water by ionizing radiation Radiat. Phys. Chem. 81 1508 1512 doi.org/10.1016/j.radphyschem.2011.11.032. 10.1016/j.radphyschem.2011.11.032 Search in Google Scholar

Zhang, Z. L., Chen, H., Wang, J. L., & Zhang, Y. X. (2020). Degradation of carbamazepine by combined radiation and persulfate oxidation process. Radiat. Phys. Chem., 170, 108639–108644. doi.org/10.1016/j.radphyschem.2019.108639. ZhangZ. L. ChenH. WangJ. L. ZhangY. X. 2020 Degradation of carbamazepine by combined radiation and persulfate oxidation process Radiat. Phys. Chem. 170 108639 108644 doi.org/10.1016/j.radphyschem.2019.108639. 10.1016/j.radphyschem.2019.108639 Search in Google Scholar

Bojanowska-Czajka, A., Kciuk, G., Gumiela, M., Borowiecka, S., Nałęcz-Jawecki, G., Koc, A., Garcia-Reyes, J. F., Solpan-Ozbay, D., & Trojanowicz, M. (2015). Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation. Environ. Sci. Pollut. Res., 22, 20255–20270. doi.org/10.1007/s11356-015-5236-6. Bojanowska-CzajkaA. KciukG. GumielaM. BorowieckaS. Nałęcz-JaweckiG. KocA. Garcia-ReyesJ. F. Solpan-OzbayD. TrojanowiczM. 2015 Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation Environ. Sci. Pollut. Res. 22 20255 20270 doi.org/10.1007/s11356-015-5236-6. 10.1007/s11356-015-5236-6 Search in Google Scholar

Homolok, R., Takacs, E., & Wojnarovits, L. (2011). Elimination of diclofenac from water using irradiation technology. Chemosphere, 85, 603–608. doi.org/10.1016/j.chemosphere.2011.06.101. HomolokR. TakacsE. WojnarovitsL. 2011 Elimination of diclofenac from water using irradiation technology Chemosphere 85 603 608 doi.org/10.1016/j.chemosphere.2011.06.101. 10.1016/j.chemosphere.2011.06.101 Search in Google Scholar

Liu, Q., Luo, X., Zheng, Z., Zheng, B., Zhang, J., Zhao, Y., Yang, X., & Wang, I. (2011) Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation. Environ. Sci. Pollut. Res., 18, 1243–1252. DOI: 10.1007/s11356-011-0457-9. LiuQ. LuoX. ZhengZ. ZhengB. ZhangJ. ZhaoY. YangX. WangI. 2011 Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation Environ. Sci. Pollut. Res. 18 1243 1252 10.1007/s11356-011-0457-9 Open DOISearch in Google Scholar

He, S. J., Wang, J. L., Ye, L. F., Zhang, Y. X., & Yu, J. (2014). Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter. Radiat. Phys. Chem., 105, 104–108. doi.org/10.1016/j.radphyschem.2014.05.019. HeS. J. WangJ. L. YeL. F. ZhangY. X. YuJ. 2014 Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter Radiat. Phys. Chem. 105 104 108 doi.org/10.1016/j.radphyschem.2014.05.019. 10.1016/j.radphyschem.2014.05.019 Search in Google Scholar

Bianchini, A., Bonfigliolo, L., Pellegrini, M., & Saccani, C. (2016). Sewage sludge management in Europe: A critical analysis of data quality. Int J. Environ. Waste Manag., 18, 226–238. DOI: 10.1504/IJEWM.2016.080795. BianchiniA. BonfiglioloL. PellegriniM. SaccaniC. 2016 Sewage sludge management in Europe: A critical analysis of data quality Int J. Environ. Waste Manag. 18 226 238 10.1504/IJEWM.2016.080795 Open DOISearch in Google Scholar

Collivignarelly, M. C., Abbà, A., Frattarola, A., Miino, M. C., Padovani, S., Katsoyiannis, I., & Torretta, V. (2019). Legislation for the reuse of bosolids on agricultural land in Europe: Overview. Sustainability, 11, 6015. DOI: 10.3390/su11216015. CollivignarellyM. C. AbbàA. FrattarolaA. MiinoM. C. PadovaniS. KatsoyiannisI. TorrettaV. 2019 Legislation for the reuse of bosolids on agricultural land in Europe: Overview Sustainability 11 6015 10.3390/su11216015 Open DOISearch in Google Scholar

Hudcova, H., Vymazal, J., & Rozkosny, M. (2019). Present restriction of sewage sludge application in agriculture within the European Union. Soil Water Res., 14, 104–120. doi.org/10.17221/36/2018-SWR. HudcovaH. VymazalJ. RozkosnyM. 2019 Present restriction of sewage sludge application in agriculture within the European Union Soil Water Res. 14 104 120 doi.org/10.17221/36/2018-SWR. 10.17221/36/2018-SWR Search in Google Scholar

Chmielewski, A. G., & Sudlitz, M. (2019). ‘Zero energy’ electron beam technology for sludge hygienization. Nukleonika, 64, 55–63. DOI: 10.2478/nuka-2019-0007. ChmielewskiA. G. SudlitzM. 2019 ‘Zero energy’ electron beam technology for sludge hygienization Nukleonika 64 55 63 10.2478/nuka-2019-0007 Open DOISearch in Google Scholar

Zuloaga, O., Navarro, P., Bizarguenaga, E., Iparraguirre, A., Vallejo, A., Olivares, M., & Prieto, A. (2012). Overview of extraction, clean up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Anal. Chim. Acta, 736, 7–29. doi.org/10.1016/j.aca.2012.05.016. ZuloagaO. NavarroP. BizarguenagaE. IparraguirreA. VallejoA. OlivaresM. PrietoA. 2012 Overview of extraction, clean up and detection techniques for the determination of organic pollutants in sewage sludge: A review Anal. Chim. Acta 736 7 29 doi.org/10.1016/j.aca.2012.05.016. 10.1016/j.aca.2012.05.016 Search in Google Scholar

Yu, H., Nie, E., Xu, J., Yan, S., Cooper, W. J., & Song, W. (2013). Degradation of diclofenac by advanced oxidation and reduction process: kinetic studies, degradation pathways and toxicity assessments. Water Res., 47, 1909–1918. doi.org/10.1016/j.watres.2013.01.016. YuH. NieE. XuJ. YanS. CooperW. J. SongW. 2013 Degradation of diclofenac by advanced oxidation and reduction process: kinetic studies, degradation pathways and toxicity assessments Water Res. 47 1909 1918 doi.org/10.1016/j.watres.2013.01.016. 10.1016/j.watres.2013.01.016 Search in Google Scholar

Basfar, A. A., Mohammed, K. A., Al-Abduly, A. J., & Al-Shahvani, A. A. (2009). Radiolytic degradation of atrazine aqueous solution containing humic substances. Ecotox. Environ. Safety, 72, 948–953. DOI: 10.1016/j.ecoenv.2008.05.006. BasfarA. A. MohammedK. A. Al-AbdulyA. J. Al-ShahvaniA. A. 2009 Radiolytic degradation of atrazine aqueous solution containing humic substances Ecotox. Environ. Safety 72 948 953 10.1016/j.ecoenv.2008.05.006 Open DOISearch in Google Scholar

Zhuan, R., & Wang, J. (2020). Degradation of diclofenac in aqueous solution by ionizing radiation in the presence of humic acid. Sep. Purif. Technol., 234, 116079–116086. doi.org/10.1016/j.seppur.2019.116079. ZhuanR. WangJ. 2020 Degradation of diclofenac in aqueous solution by ionizing radiation in the presence of humic acid Sep. Purif. Technol. 234 116079 116086 doi.org/10.1016/j.seppur.2019.116079. 10.1016/j.seppur.2019.116079 Search in Google Scholar

Christensen, H., Sehested, K., & Logager, T. (1994). Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH, H2O2. Radiat. Phys. Chem., 43, 527–532. doi.org/10.1016/0969-806X(94)90163-5. ChristensenH. SehestedK. LogagerT. 1994 Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH, H2O2 Radiat. Phys. Chem. 43 527 532 doi.org/10.1016/0969-806X(94)90163-5. 10.1016/0969-806X(94)90163-5 Search in Google Scholar

eISSN:
1508-5791
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other