1. bookTom 65 (2020): Zeszyt 1 (March 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1508-5791
Pierwsze wydanie
25 Mar 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation: a review

Data publikacji: 20 Mar 2020
Tom & Zeszyt: Tom 65 (2020) - Zeszyt 1 (March 2020)
Zakres stron: 19 - 30
Otrzymano: 17 May 2019
Przyjęty: 10 Oct 2019
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1508-5791
Pierwsze wydanie
25 Mar 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Wong, J. Y. C., Filippi, A. R., Dabaja, B. S., Yahalom, J., & Specht, L. (2018). Total Body Irradiation: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. Biol. Phys., 101, 521–529. DOI: 10.1016/j. ijrobp.2018.04.071.Search in Google Scholar

2. Paix, A., Antoni, D., Waissi, W., Ledoux, M. P., Bilger, K., Fornecker, L., & Noel, G. (2018). Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: A review. Crit. Rev. Oncol. Hematol., 123, 138–148. DOI: 10.1016/j.critrevonc.2018.01.011.10.1016/j.critrevonc.2018.01.011Search in Google Scholar

3. Lin, H. S., & Drzymala, R. E. (2003). Total body irradiation. In C. A. Perez & L. W. Brady (Eds.), Principles and practice of radiation oncology (pp. 333–342). Philadeplphia: Lippincott-Raven.Search in Google Scholar

4. Wolden, S. L., Rabinovitch, R. A., Bittner, N. H. J., Galvin, J. M., Giap, H. B., Schomberg, P. J., & Rosenthal, S. A. (2013). American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice guideline for the performance of total body irradiation (TBI). J. Clin. Oncol., 36, 97–101. DOI: 10.1097/COC.0b013e31826e0528.10.1097/COC.0b013e31826e0528Search in Google Scholar

5. Bieri, S., Helg, C., Chapuis, B., & Miralbell, R. (2001). Total body irradiation before allogeneic bone marrow transplantation: is more dose better? Int. J. Radiat. Oncol. Biol. Phys., 49, 1071–1077.10.1016/S0360-3016(00)01491-7Search in Google Scholar

6. Hartman, A. R., Williams, S. F., & Dillon, J. J. (1998). Survival, disease-free survival and adverse effects of conditioning for allogeneic bone marrow transplantation with busulfan/cyclophosphamide vs total body irradiation: a meta-analysis. Bone Marrow Transplant., 22, 439–443. DOI: 10.1038/sj.bmt.1701334.10.1038/sj.bmt.1701334Search in Google Scholar

7. Blaise, D., Maraninchi, D., Michallet, M., Reiffers, J., Jouet, J. P., Milpied, N., Devergie, A., Attal, M., Sotto, J. J., Kuentz, M., Ifrah, N., Dauriac, C., Bordigoni, P., Gratecos, N., Guilhot, F., Guyotat, D., Gluckman, E., & Vernant, J. P. (2001). Long-term follow-up of a randomized trial comparing the combination of cyclophosphamide with total body irradiation or busulfan as conditioning regimen for patients receiving HLA-identical marrow grafts for acute myeloblastic leukemia in first complete remission. Blood, 97, 3669–3671.10.1182/blood.V97.11.3669Search in Google Scholar

8. Dusenbery, K. E., Daniels, K. A., McClure, J. S., Mc-Glave, P. B., Ramsay, N. K., Blazar, B. R., Neglia, J. P., Kersey, J. H., & Woods, W. G. (1995). Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia. Int. J. Radiat. Oncol. Biol. Phys., 31, 119–128.10.1016/0360-3016(94)00335-ISearch in Google Scholar

9. Michel, G., Gluckman, E., Esperou-Bourdeau, H., Reiffers, J., Pico, J. L., Bordigoni, P., Thuret, I., Blaise, D., Bernaudin, F., & Jouet, J. P. (1994). Allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: impact of conditioning regimen without total-body irradiation–a report from the Societe Francaise de Greffe de Moelle. J. Clin. Oncol., 12, 1217–1222. DOI: 10.1200/JCO.1994.12.6.1217.10.1200/JCO.1994.12.6.12178201385Search in Google Scholar

10. Bunin, N., Aplenc, R., Kamani, N., Shaw, K., Cnaan, A., & Simms, S. (2003). Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant., 32, 543–548. DOI: 10.1038/sj.bmt.1704198.10.1038/sj.bmt.170419812953124Search in Google Scholar

11. Clift, R. A., Buckner, C. D., Appelbaum, F. R., Sullivan, K. M., Storb, R., & Thomas, E. D. (1998). Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood, 92, 1455–1456.10.1182/blood.V92.4.1455Search in Google Scholar

12. Ringden, O., Ruutu, T., Remberger, M., Nikoskelainen, J., Volin, L., Vindelov, L., Parkkali, T., Lenhoff, S., Sallerfors, B., & Ljungman, P. (1994). A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic Bone Marrow Transplantation Group. Blood, 83, 2723–2730.10.1182/blood.V83.9.2723.2723Search in Google Scholar

13. Bolling, T., Kreuziger, D. C., Ernst, I., Elsayed, H., & Willich, N. (2011). Retrospective, monocentric analysis of late effects after total body irradiation (TBI) in adults. Strahlenther. Onkol., 187, 311–315. DOI: 10.1007/s00066-011-2190-1.10.1007/s00066-011-2190-1Search in Google Scholar

14. Blaise, D., Maraninchi, D., Archimbaud, E., Reiffers, J., Devergie, A., Jouet, J. P., Milpied, N., Attal, M., Michallet, M., & Ifrah, N. (1992). Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: a randomized trial of a busulfancytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the Group d’Etudes de la Greffe de Moelle Osseuse. Blood, 79, 2578–2582.10.1182/blood.V79.10.2578.bloodjournal79102578Search in Google Scholar

15. Leiper, A. D. (1995). Late effects of total body irradiation. Arch. Dis. Child, 72, 382–385. DOI: 10.1136/adc.72.5.382.10.1136/adc.72.5.382Search in Google Scholar

16. Shank, B. (1996). The balancing act: pneumonitis vs. relapse in cytoreductive regimens containing total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 36, 261–262.10.1016/S0360-3016(96)00307-0Search in Google Scholar

17. Ringden, O., Remberger, M., Ruutu, T., Nikoskelainen, J., Volin, L., Vindelov, L., Parkkali, T., Lenhoff, S., Sallerfors, B., Mellander, L., Ljungman, P., & Jacobsen, N. (1999). Increased risk of chronic graft-versus-host disease, obstructive bronchiolitis, and alopecia with busulfan versus total body irradiation: long-term results of a randomized trial in allogeneic marrow recipients with leukemia. Nordic Bone Marrow Transplantation Group. Blood, 93, 2196–2201.10.1182/blood.V93.7.2196Search in Google Scholar

18. Socie, G., Clift, R. A., Blaise, D., Devergie, A., Ringden, O., Martin, P. J., Remberger, M., Deeg, H. J., Ruutu, T., Michallet, M., Sullivan, K. M., & Chevret, S. (2001). Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood, 98, 3569–3574.10.1182/blood.V98.13.356911739158Search in Google Scholar

19. Della Volpe, A., Ferreri, A. J. M., Annaloro, C., Mangili, P., Rosso, A., Calandrino, R., Villa, E., Lambertenghi-Deliliers, G., & Fiorino, C. (2002) Lethal pulmonary complications significantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 52, 483–488.Search in Google Scholar

20. Hasegawa, W., Pond, G. R., Rifkind, J. T., Messner, H. A., Lau, A., Daly, A. S., Kiss, T. L., Kotchetkova, N., Galal, A., & Lipton, J. H. (2005). Long-term follow-up of secondary malignancies in adults after allogeneic bone marrow transplantation. Bone Marrow Transplant., 35, 51–55. DOI: 10.1038/sj.bmt.1704706.10.1038/sj.bmt.170470615516939Search in Google Scholar

21. Curtis, R. E., Rowlings, P. A., Deeg, H. J., Shriner, D. A., Socie, G., Travis, L. B., Horowitz, M. M., Witherspoon, R. P., Hoover, R. N., Sobocinski, K. A., Fraumeni, J. F. Jr., & Boice, J. D. Jr. (1997). Solid cancers after bone marrow transplantation. N. Engl. J. Med., 336, 897–904. DOI: 10.1056/NEJM199703273361301.10.1056/NEJM1997032733613019070469Search in Google Scholar

22. Heublein, A. C. (1932). Preliminary report on continuous irradiation of the entire body. Radiology, 18, 1051–1062.10.1148/18.6.1051Search in Google Scholar

23. Ferrebee, J. W., & Thomas, E. D. (1958). Factors affecting the survival of transplanted tissues. Am. J. Med. Sci., 235, 369–386.10.1097/00000441-195804000-00001Search in Google Scholar

24. van Dyk, J., Galvin, J. M., Glasgrow, G. P., & Podgorsak, E. B. (1986). The physical aspects of total and half body photon irradiation. New York: American Institute of Physics, Inc. (AAPM Report 17, Task Group 29).10.37206/16Search in Google Scholar

25. Webster, E. W. (1960). Physical considerations in the design of facilities for the uniform whole-body irradiation of man. Radiology, 75, 19–32.10.1148/75.1.19Search in Google Scholar

26. Jacobs, M. L., & Pape, L. (1960). A total body irradiation chamber and its uses. Int. J. Appl. Radiat. Isot., 9, 141–143.10.1016/0020-708X(60)90111-3Search in Google Scholar

27. Brucer, M. (1961). A total body irradiator. Int. J. Appl. Radiat. Isot., 10, 99–105.10.1016/0020-708X(61)90105-3Search in Google Scholar

28. Draeger, R. H., Lee, R. H., Shea, T. E., Whitten, F. I., & Eicher, M. (1953). Research Report 11. Bethesda, MD: Naval Medical Research Institute. (1219).Search in Google Scholar

29. Sahler, O. D. (1959). Development of a room specifically designed for total body irradiation. Radiology, 72, 266–267.10.1148/72.2.266Search in Google Scholar

30. Surmont, J., Dutreix, A., & Lalanne, C. M. (1960). Les irradiations in toto pour greffes de tissu ou transplantation d’organe chez l’homme. Problems techniques. J. Radiol. Electrol., 41, 679–689.Search in Google Scholar

31. Thomas, E. D., Storb, R., & Buckner, C. D. (1976). Total body irradiation in preparation for marrow engraftment. Transplant. Proc., 4, 591–593.Search in Google Scholar

32. Lam, W. C., Order, S. E., & Thomas, E. D. (1980). Uniformity and standardization of single and opposing cobalt-60 sources for total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 6, 245–250.10.1016/0360-3016(80)90045-0Search in Google Scholar

33. Leung, P. M. K., Rider, W. D., Webb, H. P., Aget, H., & Johns, H. E. (1981). Cobalt-60 therapy unit for large field irradiation. Int. J. Radiat. Oncol. Biol. Phys., 7, 705–712.10.1016/0360-3016(81)90461-2Search in Google Scholar

34. Cunningham, J. R., & Wright, D. J. (1962). A simple facility for whole-body irradiation. Radiology, 78, 941–949.10.1148/78.6.941Search in Google Scholar

35. Quast, U. (1985). Physical treatment planning of total body irradiation – Patient translation and beam zone method. Med. Phys., 12, 567–573.10.1118/1.595677Search in Google Scholar

36. Mulvey, P. J., & Godlee, J. N. (1982). Technique and dosimetry for TBI at University College Hospital, London. J. Eur. Radiother., 3, 241–242.Search in Google Scholar

37. Peters, V. G., & Herer, A. S. (1984). Modification of a standard cobalt-60 unit for total body irradiation at 150 cm SSD. Int. J. Radiat. Oncol. Biol. Phys., 10, 927–932.10.1016/0360-3016(84)90397-3Search in Google Scholar

38. Chretien, M., Côté, C., Blais, R., Brouard, L., Roy-Lacroix, L., Larochelle, M., Roy, R., & Pouliot, J. (2000). A variable speed translating couch technique for total body irradiation. Med. Phys., 27, 1127–1130. DOI: 10.1118/1.598978.10.1118/1.598978Search in Google Scholar

39. Pla, M., Chenery, S. G., & Podgorsak, E. B. (1983). Total body irradiation with a sweeping beam. Int. J. Radiat. Oncol. Biol. Phys., 9, 83–89.10.1016/0360-3016(83)90214-6Search in Google Scholar

40. Kim, T. H., Khan, F. M., & Galvin, J. M. (1980). Total body irradiation conference: A report of the work party: Comparison of total body irradiation techniques for bone marrow transplantation. Int. J. Radiat. Oncol. Biol. Phys., 6, 779–784.10.1016/0360-3016(80)90240-0Search in Google Scholar

41. Malicki, J., Wachowiak, J., Kosicka, G., Stryczyńska, G., Nowak, A., & Pracz, J. (2001). Total body irradiation before bone marrow transplantation: aims and results. Adv. Exp. Med. Biol., 495, 277–282.10.1007/978-1-4615-0685-0_38Search in Google Scholar

42. Girinsky, T., Socie, G., Ammarguellat, H., Cosset, J. M., Briot, E., Bridier, A., & Gluckman, E. (1994). Consequences of two different doses to the lungs during a single dose of total body irradiation: results of a randomized study on 85 patients. Int. J. Radiat. Oncol. Biol. Phys., 30, 821–824.10.1016/0360-3016(94)90355-7Search in Google Scholar

43. Malicki, J. (1998). Doses in critical organs during total body irradiation before bone marrow transplantation. Ann. Transplant., 3, 14–19.Search in Google Scholar

44. Barrett, A., Depledge, M. H., & Powles, R. L. (1983). Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 9, 1029–1033.10.1016/0360-3016(83)90393-0Search in Google Scholar

45. Ozsahin, M., Pène, F., Touboul, E., Gindrey-Vie, B., Dominique, C., Lefkopoulos, D., Krzisch, C., Balosso, J., Vitu, L., & Schwartz, L. H. (1992). Total-body irradiation before bone marrow transplantation. Results of two randomized instantaneous dose rates in 157 patients. Cancer, 69, 2853–2865.10.1002/1097-0142(19920601)69:11<2853::AID-CNCR2820691135>3.0.CO;2-2Search in Google Scholar

46. Gogna, N. K., Morgan, G., Downs, K., Atkinson, K., & Biggs, J. (1992). Lung dose rate and interstitial pneumonitis in total body irradiation for bone marrow transplantation. Australas. Radiol., 36, 317–320.10.1111/j.1440-1673.1992.tb03208.xSearch in Google Scholar

47. Planskoy, B., Bedford, A. M., Davis, F. M., Tapper, P. D., & Loverock, L. T. (1996). Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988–1993: I. Phantom measurements and planning methods. Phys. Med. Biol., 41, 2307–2326.10.1088/0031-9155/41/11/005Search in Google Scholar

48. Yao, R., Bernard, D., Turian, J., Abrams, R. A., Sensakovic, W., Fung, H. C., & Chu, J. C. (2012). A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity. Med. Phys., 39, 2239–2248. DOI: 10.1118/1.3697526.10.1118/1.3697526Search in Google Scholar

49. Malicki, J., Kosicka, G., Stryczyńska, G., & Wachowiak, J. (2001). Cobalt 60 versus 15 MeV photons during total body irradiation: doses in the critical organs and complexicity of the procedure. Ann. Transplant., 6, 18–22.Search in Google Scholar

50. Malicki, J., Skrobala, A., Kosicka, G., & Wachowiak, J. (2005). The efficacy and reliability of lung protection during total body irradiation of patients with disseminated malignancies. Neoplasma, 52, 325–329.Search in Google Scholar

51. Kawa-Iwanicka, A., Lobodziec, W., Dybek, M., Nenko, D., & Iwanicki, T. (2012). Dose distribution homogeneity in two TBI techniques-Analysis of 208 irradiated patients conducted in Stanislaw Leszczynski Memorial Hospital, Katowice. Rep. Pract. Oncol. Radiother., 17, 367–375. DOI: 10.1016/j.rpor.2012.07.013.10.1016/j.rpor.2012.07.013Search in Google Scholar

52. Malicki, J. (1999). The accuracy of dose determination during total body irradiation. Strahlenther. Onkol., 175, 208–212.10.1007/BF02742397Search in Google Scholar

53. Piotrowski, T., Adamska, K., & Malicki, J. (2007). Effect of scattered radiation in the total body irradiation technique: evaluation of the spoiler and wall dose component in the depth dose distribution. Nukleonika, 52(4), 153–158.Search in Google Scholar

54. Shank, B., O’Reilly, R. J., Cunningham, I., Kernan, N., Yaholom, J., Brochstein, J., Castro-Malaspina, H., Kutcher, G. J., Mohan, R., & Bonfiglio, P. (1990). Total body irradiation for bone marrow transplantation: The Memorial Sloan-Kettering Cancer Center experience. Radiother. Oncol., 18, 68–81.10.1016/0167-8140(90)90180-5Search in Google Scholar

55. Hui, S. K., Das, R. K., Thomadsen, B., & Henderson, D. (2004). CT-based analysis of dose homogeneity in total body irradiation using lateral beam. J. Appl. Clin. Med. Phys., 5, 71–79.10.1120/jacmp.v5i4.1980Search in Google Scholar

56. Ozsahin, M., Belkacemi, Y., Pene, F., Dominique, C., Schwartz, L. H., Uzal, C., Lefkopoulos, D., Gindrey-Vie, B., Vitu-Loas, L., & Touboul, E. (1994). Total-body irradiation and cataract incidence: a randomized comparison of two instantaneous dose rates. Int. J. Radiat. Oncol. Biol. Phys., 28, 343–347.10.1016/0360-3016(94)90056-6Search in Google Scholar

57. Burmeister, J., Nalichowski, A., Snyder, M., Halford, R., Baran, G., Loughery, B., Hammoud, A., Rakowski, J., & Bossenberger, T. (2018). Commissioning of a dedicated commercial Co-60 total body irradiation unit. J. Appl. Clin. Med. Phys., 19, 131–141. DOI: 10.1002/acm2.12309.10.1002/acm2.12309597870329527816Search in Google Scholar

58. Snyder, M., Halford, R., Loughery, B., Nalichowski, A., Bossenberger, T., & Burmeister, J. (2017). Monte Carlo treatment planning for a new Co-60 total body irradiator. Med. Phys., 44, 2918.Search in Google Scholar

59. Mackie, T. R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J. O., Yang, J., Paliwal, B., & Kinsella, T. (1993). Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med. Phys., 20, 1709–1719.10.1118/1.5969588309444Search in Google Scholar

60. Piotrowski, T., Skórska, M., Jodda, A., Ryczkowski, A., Kaźmierska, J., Adamska, K., Karczewska-Dzionk, A., Żmijewska-Tomczak, M., & Włodarczyk, H. (2012). Tomotherapy – different way of dose delivery in radiotherapy. Contemp. Oncol. (Pozn), 16, 16–25. DOI: 10.5114/wo.2012.27332.10.5114/wo.2012.27332368738023788850Search in Google Scholar

61. Zeverino, M., Agostinelli, S., Taccini, G., Cavagnetto, F., Garelli, S., Gusinu, M., Vagge, S., Barra, S., & Corvò, R. (2012). Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel field junction technique. Med. Dosim., 37, 314–320. DOI: 10.1016/j.meddos.2011.12.001.10.1016/j.meddos.2011.12.00122326734Search in Google Scholar

62. Hui, S. K., Kapatoes, J., Fowler, J., Henderson, D., Olivera, G., Manon, R. R., Gerbi, B., Mackie, T. R., & Welsh, J. S. (2005). Feasibility study of helical tomotherapy for total body or total marrow irradiation. Med. Phys., 32, 3214–3224. DOI: 10.1118/1.2044428.10.1118/1.204442816279075Search in Google Scholar

63. Wong, J. Y., Liu, A., Schultheiss, T., Popplewell, L., Stein, A., Rosenthal, J., Essensten, M., Forman, S., & Somlo, G. (2006). Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol. Blood Marrow Transplant., 12, 306–315. DOI: 10.1016/j. bbmt.2005.10.026.Search in Google Scholar

64. Schultheiss, T. E., Wong, J., Liu, A., Olivera, G., & Somlo, G. (2007). Image-guided total marrow and total lymphatic irradiation using helical tomotherapy. Int. J. Radiat. Oncol. Biol. Phys., 67, 1259–1267. DOI: 10.1016/j.ijrobp.2006.10.047.10.1016/j.ijrobp.2006.10.047Search in Google Scholar

65. Wong, J. Y., Rosenthal, J., Liu, A., Schultheiss, T., Forman, S., & Somlo, G. (2009). Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int. J. Radiat. Oncol. Biol. Phys., 73, 273–279. DOI: 10.1016/j.ijrobp.2008.04.071.10.1016/j.ijrobp.2008.04.071Search in Google Scholar

66. Shueng, P. W., Lin, S. C., Chong, N. S., Lee, H. Y., Tien, H. J., Wu, L. J., Chen, C. A., Lee, J. J., & Hsieh, C. H. (2009). Total marrow irradiation with helical tomotherapy for bone marrow transplantation of multiple myeloma: first experience in Asia. Technol. Cancer Res. Treat., 8, 29–38. DOI: 10.1177/153303460900800105.10.1177/153303460900800105Search in Google Scholar

67. Konstanty, E., Malicki, J., Łagodowska, K., & Kowalik, A. (2017). Dosimetric verification of dose calculation algorithm in the lung during total marrow irradiation using helical tomotherapy. J. Cancer Res. Ther., 13, 33–37. DOI: 10.4103/jcrt.JCRT_980_15.10.4103/jcrt.JCRT_980_15Search in Google Scholar

68. Piotrowski, T., Czajka, E., Bak, B., Kazmierska, J., Skorska, M., Ryczkowski, A., Adamczyk, M., & Jodda, A. (2014). Tomotherapy: Implications on daily workload and scheduling patients based on three years’ institutional experience. Technol. Cancer Res. Treat., 13, 233–242. DOI: 10.7785/tcrt.2012.500374.10.7785/tcrt.2012.500374Search in Google Scholar

69. Takahashi, Y., & Hui, S. K. (2013). Impact of very long time output variation in the treatment of total marrow irradiation with helical tomotherapy. Radiat. Oncol., 8, 123. DOI: 10.1186/1748-717X-8-123.10.1186/1748-717X-8-123Search in Google Scholar

70. Roeske, J. C., Lujan, A., & Rotmensch, J. (2000). Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int. J. Radiat. Oncol. Biol. Phys., 48, 1613–1621.10.1016/S0360-3016(00)00771-9Search in Google Scholar

71. Wu, Q., Arnfield, M., & Tong, S. (2000). Dynamic splitting of large intensity-modulated fields. Phys. Med. Biol., 45, 1731–1740.10.1088/0031-9155/45/7/30210943915Search in Google Scholar

72. Aydogan, B., Mundt, A. J., & Roeske, J. C. (2006). Linac-based Intensity Modulated Total Marrow Irradiation (IM-TMI). Technol. Cancer Res. Treat., 5, 513–519. DOI: 10.1177/153303460600500508.10.1177/15330346060050050816981794Search in Google Scholar

73. Yeginer, M., Roeske, J. C., Radosevich, J. A., & Aydogan, B. (2011). Linear accelerator-based intensity-modulated total marrow irradiation technique for treatment of hematologic malignancies: a dosimetric feasibility study. Int. J. Radiat. Oncol. Biol. Phys., 79, 1256–1265. DOI: 10.1016/j.ijrobp.2010.06.029.10.1016/j.ijrobp.2010.06.02921035960Search in Google Scholar

74. Bush, K., Townson, R., & Zavgorodni, S. (2008). Monte Carlo simulation of RapidArc radiotherapy delivery. Phys. Med. Biol., 53, N359–N370. DOI: 10.1088/0031-9155/53/19/N01.10.1088/0031-9155/53/19/N0118758001Search in Google Scholar

75. Mancosu, P., Cozzi, L., & Muren, L. P. (2019). Total marrow irradiation for hematopoietic malignancies using volumetric modulated arc therapy: A review of treatment planning studies. Phys. Imaging Radiat. Oncol., 11, 47–53. DOI: 10.1016/j.phro.2019.08.001.10.1016/j.phro.2019.08.001780786633458277Search in Google Scholar

76. Korreman, S., Medin, J., & Kjaer-Kristoffersen, F. (2009). Dosimetric verification of RapidArc treatment delivery. Acta Oncol., 48, 185–191. DOI: 10.1080/02841860802287116.10.1080/0284186080228711618777411Search in Google Scholar

77. Fogliata, A., Cozzi, L., Clivio, A., Ibatici, A., Mancosu, P., Navarria, P., Nicolini, G., Santoro, A., Vanetti, E., & Scorsetti, M. (2011). Preclinical assessment of volumetric modulated arc therapy for total marrow irradiation. Int. J. Radiat. Oncol. Biol. Phys., 80, 628–636. DOI: 10.1016/j.ijrobp.2010.11.028.10.1016/j.ijrobp.2010.11.02821277109Search in Google Scholar

78. Aydogan, B., Yeginer, M., Kavak, G. O., Fan, J., Radosevich, J., & Gwe-Ya, K. (2011). Total marrow irradiation with rapidarc volumetric arc therapy. Int. J. Radiat. Oncol. Biol. Phys., 81, 592–599. DOI: 10.1016/j. ijrobp.2010.11.035.Search in Google Scholar

79. Han, C., Schultheiss, T. E., & Wong, J. Y. C. (2012). Dosimetric study of volumetric modulated arc therapy fields for total marrow irradiation. Radiother. Oncol., 102, 315–320. DOI: 10.1016/j.radonc.2011.06.005.10.1016/j.radonc.2011.06.00521724284Search in Google Scholar

80. Surucu, M., Yeginer, M., Kavak, G. O., Fan, J., Radosevich, J. A., & Aydogan, B. (2012). Verification of dose distribution for volumetric modulated arc therapy total marrow irradiation in a humanlike phantom. Med. Phys., 39, 281–288. DOI: 10.1118/1.3668055.10.1118/1.366805522225298Search in Google Scholar

81. Symons, K., Morrison, C., Parry, J., Woodings, S., & Zissiadis, Y. (2018). Volumetric modulated arc therapy for total body irradiation: A feasibility study using Pinnacle3 treatment planning system and Elekta AgilityTM linac. J. Appl. Clin. Med. Phys., 19, 103–110. DOI: 10.1002/acm2.12257.10.1002/acm2.12257584985629368389Search in Google Scholar

82. Mancosu, P., Navarria, P., Castagna, L., Reggiori, G., Sarina, B., Tomatis, S., Alongi, F., Nicolini, G., Fogliata, A., Cozzi, L., & Scorsetti, M. (2013). Interplay effects between dose distribution quality and positioning accuracy in total marrow irradiation with volumetric modulated arc therapy. Med. Phys., 40, 111713. DOI: 10.1118/1.4823767.10.1118/1.482376724320421Search in Google Scholar

83. Mancosu, P., Navarria, P., Castagna, L., Reggiori, G., Stravato, A., Gaudino, A., Sarina, B., Tomatis, S., & Scorsetti, M. (2015). Plan robustness in field junction region from arcs with different patient orientation in total marrow irradiation with VMAT. Phys. Med., 31, 677–682. DOI: 10.1016/j.ejmp.2015.05.012.10.1016/j.ejmp.2015.05.01226068115Search in Google Scholar

84. Mancosu, P., Navarria, P., Reggiori, G., Cozzi, L., Fogliata, A., Gaudino, A., Lobefalo, F., Paganini, L., Palumbo, V., Sarina, B., Stravato, A., Castagna, L., Tomatis, S., & Scorsetti, M. (2015). In-vivo dosimetry with Gafchromic films for multi-isocentric VMAT irradiation of total marrow lymph-nodes: a feasibility study. Radiat. Oncol., 10, 86. DOI: 10.1186/s13014-015-0391-y.10.1186/s13014-015-0391-y439769425881084Search in Google Scholar

85. Accuray Inc. (2017). PreciseARTTM adaptive radiation therapy option. Retrieved September 1, 2019, from https://www.accuray.com/wp-content/uploads/rx-preciseart-mkt-txplg-0217-0031-1.pdf.Search in Google Scholar

86. Xie, C., Xu, S., Xu, W., Cong, X., Ge, R., Gong, H., Ju, Z., & Dai, X. (2015). Patient-specific dose verification method using ArcCHECK for total marrow irradiation with intensity modulated arc therapy. Zhongguo Yi Liao Qi Xie Za Zhi, 39, 68–71. (in Chinese).Search in Google Scholar

87. Bao, Z., Zhao, H., Wang, D., Gong, J., Zhong, Y., Xiong, Y., Deng, D., Xie, C., Liu, A., Wang, X., & Liu, H. (2018). Feasibility of a novel dose fractionation strategy in TMI/TMLI. Radiat. Oncol., 13, 248. DOI: 10.1186/s13014-018-1201-0.10.1186/s13014-018-1201-0629605430558631Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo