Otwarty dostęp

An Improved Method for Determination of Refractive Index of Dielectric Films from Reflectance Spectrum by Using the Generalized Morse Wavelet


Zacytuj

[1] Manifacier, J.C., Gasiot, J., Fillard, J.P. (1976). A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. Journal of Physics E: Scientific Instruments, 9 (11), 1002-1004.10.1088/0022-3735/9/11/032 Search in Google Scholar

[2] Swanepoel, R. (1983). Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 16, 1214. Search in Google Scholar

[3] Minkov, D.A. (1989). Method for determining the optical constants of a thin film on a transparent substrate. Journal of Physics D: Applied Physics, 22 (1), 199-205.10.1088/0022-3727/22/1/029 Search in Google Scholar

[4] Müllerová, J., Mudroň, J. (2000). Determination of optical parameters and thickness of thin films deposited on absorbing substrates using their reflection spectra. Acta Physica Slovaca, 50 (4), 477-488. Search in Google Scholar

[5] Herrmann, P.P. (1980) Determination of thickness, refractive index, and dispersion of waveguiding thin films with an Abbe refractometer. Applied Optics, 19 (19), 3261.10.1364/AO.19.00326120234602 Search in Google Scholar

[6] Nestler, P., Helm, C.A. (2017). Determination of refractive index and layer thickness of nm-thin films via ellipsometry. Optics Express, 25 (22), 27077.10.1364/OE.25.02707729092189 Search in Google Scholar

[7] Shimizu, Y., Batres, R., Zhang, Z. (2007). Frontiers in Computing Technologies for Manufacturing Applications. Springer, ISBN 978-1-84628-954-5. Search in Google Scholar

[8] Coşkun, E., Özder, S., Tiryaki, E. (2013). The Paul wavelet algorithm: An alternative approach to calculate the refractive index dispersion of a dielectric film from transmittance spectrum. Applied Physics B: Lasers and Optics, 113 (2), 243-250.10.1007/s00340-013-5465-7 Search in Google Scholar

[9] Tiryaki, E., Coşkun, E., Kocahan, Ö., Özder, S. (2017). A simulation study for determination of refractive index dispersion of dielectric film from reflectance spectrum by using Paul wavelet. In AIP Conference Proceedings, 1815, 050014.10.1063/1.4976392 Search in Google Scholar

[10] Kocahan, Ö., Coşkun, E., Tiryaki, E., Özder, S. (2019). The zero order generalized Morse wavelet method to determine the refractive index and extinction coefficient dispersions of an absorbing film. Thin Solid Films, 673, 72-77.10.1016/j.tsf.2019.01.032 Search in Google Scholar

[11] Özcan, S., Coşkun, E., Kocahan, Ö., Özder, S. (2019). Simultaneous determination of the thickness and refractive index dispersion of dielectric films by the Paul wavelet transform. Thin Solid Films, 692, 137602.10.1016/j.tsf.2019.137602 Search in Google Scholar

[12] Padera, F. (2013). Measuring Absorptance (k) and Refractive Index (n) of Thin Films with the PerkinElmer Lambda 950/1050 High Performance UV-Vis/NIR Spectrometers. Application Note. Shelton, CT USA: PerkinElmer, Inc. Search in Google Scholar

[13] Ataç, E., Dinleyici, M.S. (2020). Nanoscale curved dielectric film characterization beyond diffraction limits using spatially structured illumination. Optical Fiber Technology, 58, 102267.10.1016/j.yofte.2020.102267 Search in Google Scholar

[14] El-Zaiat, S. (1997). Application of multiple-beam white-light fringes for measuring the refraction and dispersion of mica. Optics & Laser Technology, 29 (8), 495-500. Search in Google Scholar

[15] Coşkun, E., Sel, K., Özder, S. (2010). Determination of the refractive index of a dielectric film continuously by the generalized S-transform. Optics Letters, 35 (6), 841.10.1364/OL.35.00084120237617 Search in Google Scholar

[16] Hecht, E. (2017). Optics: Fifth Edition. Pearson, ISBN 978-0133977226. Search in Google Scholar

[17] Grossmann, A., Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15 (4), 723-736.10.1137/0515056 Search in Google Scholar

[18] Olhede, S.C., Walden, A.T. (2002). Generalized Morse wavelets. IEEE Transactions on Signal Processing, 50 (11), 2661-2670.10.1109/TSP.2002.804066 Search in Google Scholar

[19] Torrence, C., Compo, G.P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61-78.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 Search in Google Scholar

[20] Yilmaz, Ö.K., Coşkun, E., Özder, S. (2014). Generalized Morse wavelets for the phase evaluation of projected fringe pattern. Measurement Science and Technology, 25 (10), 105701.10.1088/0957-0233/25/10/105701 Search in Google Scholar

[21] Jenkins, F.A., White, H.E. (2001). Fundamentals of Optics, 4th ed. McGraw-Hill Education, ISBN 978-0072561913. Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing