1. bookTom 29 (2021): Zeszyt 4 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2450-5781
Pierwsze wydanie
30 Mar 2017
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

Blades Interaction and Non-Stationarity of Flow in Vertical-Axial Wind Turbines

Data publikacji: 14 Dec 2021
Tom & Zeszyt: Tom 29 (2021) - Zeszyt 4 (December 2021)
Zakres stron: 280 - 286
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2450-5781
Pierwsze wydanie
30 Mar 2017
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

Until recently, horizontal-axial wind turbines with blades having a wing profile occupied a predominant position in the world wind energy market. But currently, vertical-axial wind units are of increasing interest and this is understandable from the point of view of their important features as: no requirements for the orientation of the wind turbine to the wind, the possibility of placing electrical and other equipment on the ground, no requirements for changes of blade chord installation angle along its length. The article discusses the aerodynamics of the vertical-axis wind turbines: the range of changes of angles of incoming flow attack on the blade, the dynamics of changes in the magnitude of the absolute speed of flow of the blade on a circular trajectory of its movement depending on the turbine rapidity, and also obtained in experiments interaction effect of the blades in the rotor. The experiments were carried out on wind turbines with original blades (basic version), which were designed to eliminate the shortcomings of low-speed rotors Savonius (low coefficient of use of wind energy) and high-speed rotors Darrieus (lack of self-start).

Keywords

[1] D.J. De Renzo. Vetroenergetika [Wind energy]. Moscow, 272 p., 1982. Search in Google Scholar

[2] J.W. Twidell and A.D. Weir. Renewable Energy Resources. London, E. & F.N. Spon, 392 p., 1986. Search in Google Scholar

[3] V.A. Dzendzerskiy, S. Tarasov and I. Kostyukov. Vetroustanovki maloi moshchnosti [Low power wind turbines]. Kiev, 591 p., 2011. (in Russian) Search in Google Scholar

[4] D.N. Gorelov. Aerodinamika vetrokolyos s vertikalnoi osyu vrashcheniya [Aerodynamics of wind turbine with vertical axis of rotation]. Omsk, 68 p., 2012. (in Russian) Search in Google Scholar

[5] D.N. Gorelov. “Eksperimentalnoe issledovanie energeticheskikh kharakteristik dvukhyarusnogo rotora Savoniusa” [Experimental study of energy characteristics of Savonius twin-tier rotor]”. Teplofizika i aeromekhanika, 2005, vol. 12, no. 4, pp. 693-696. (in Russian) Search in Google Scholar

[6] D.N. Gorelov. “Problemy aerodinamiki vetrokolesa Dar’e [Problems of Darrieus wind turbine aerodynamics]”. Teplofizika i aeromekhanika, 2005, vol. 10, no. 1, pp. 47-51. (in Russian) Search in Google Scholar

[7] D.N. Gorelov and Yu.N. Kuzmenko. “Eksperimentalnaya otsenka predelnoi moshchnosti vetrokolesa s vertikalnoi osyu vrashcheniya [Experimental estimation of the maximum power of a wind turbine with a vertical axis of rotation]”. Teplofizika i aeromekhanika, 2001, vol. 8, no. 2, pp. 329-331. (in Russian) Search in Google Scholar

[8] D.N. Gorelov, V.V. V’yugov and V.P. Krivospitskii. “Eksperimental’noe issledovanie dvukhyarusnogo rotora Dar’e [Experimental study of Darrieus twin-tier rotor]”. Teplofizika i aeromekhanika, 2005, vol. 10, no. 2, pp. 243-248. (in Russian) Search in Google Scholar

[9] D.N. Gorelov and V.P. Krivospitskii. “Perspektivy razvitiya vetroenergeticheskikh ustanovok s ortogonal’nym rotorom [Prospects for development of wind power units with orthogonal rotor]”. Teplofizika i aeromekhanika, 2008, vol. 15, no. 1, pp. 163-167. (in Russian)10.1134/S0869864308010149 Search in Google Scholar

[10] D.N. Gorelov. “Energeticheskie kharakteristiki rotora Dar’e [Energy characteristics of Darrieus rotor (overview)]”. Teplofizika i aeromekhanika, 2010, vol. 17, no. 3, pp. 325-333. (in Russian)10.1134/S0869864310030017 Search in Google Scholar

[11] I.I. Ivanov, G.A. Ivanova, O.L. Perfilov. “Model’nye issledovaniya rotornykh rabochikh kolyos vetroenergeticheskikh stantsyi [Model studies of rotor impellers of wind power stations]”. Sbornik trudov Gidroproekta “Vetroenergeticheskie stantsii”, Moscow [Proc. of the Gidroproekt “Wind energy stations”, Moscow], 1988, no. 129, pp. 106-113. (in Russian) Search in Google Scholar

[12] V.P. Kharitonov. Avtonomnye vetroelektricheskie ustanovki [Autonomous wind electric power stations]. Moscow, 2006, 280 p. (in Russian) Search in Google Scholar

[13] P.G. Baklushin, V.V. Samsonov, K.P. Vashkevich. “Eksperimental’nye issledovaniya aerodinamicheskikh kharakteristik ortogonal’nykh kryl’chatukh vetrokolyos [Experimental research of aerodynamics characteristics of orthogonal blade wind turbines]” Sbornik trudov Gidroproekta “Vetroenergeticheskie stantsii”, Moskva [Proc. of the Gidroproekt “Wind energy stations”, Moscow], 1988, no. 129, pp. 98-105. (in Russian) Search in Google Scholar

[14] A.M. Fedyushkin and O.V. Levinskikh. “Experimental research of the wind turbine with a vertical axis of rotation” Tematicheskii sbornik nauchnykh trudov KhAI im. Zhukovskogo N.E. “Konstruktsiya i okhlazhdenie elektricheskikh mashin bezodkhodnoi tekhnologii”, Kharkov [Thematic proc. Of KhAI named Zhukovsky N.E. “Design and cooling of electric machines of waste-free technology”, Kharkov], 1986, pp. 160-166. (in Russian) Search in Google Scholar

[15] A.N. Razdobarin. “Raschyot vozdeistviya nestatsionarnykh poryvov na obtekanie profilya [Calculation of influence of non-stationary impulses on profile flow]”. Trudy Tsentral’nogo aerodinamicheskogo instituta imeni N.E. Zhukovskogo [Proc of Central aero-hydrodynamics institute named N.E. Zhukovskii], 1996, no. 2622, pp. 3-14. (in Russian) Search in Google Scholar

[16] V.M. Kovalenko and L.G. Rozhkova. “Vertikal’no-osovi vetroustanovky serednyoi bystrokhodnosti [Vertical-axial wind stations with average rapidity]” Zbirka prats’ II Ukrajins’koji naukovo-tekhnichnoji konferentsiji “gidromekhanika v inzhenernii praktytsi” [Proc. Ukrainian Scientific and Technical Conference “Hydromechanical in Engineering Practice”]. Kyiv-Cherkassy, 1997, pp. 202-204. (in Ukrainian) Search in Google Scholar

[17] L.G. Rozhkova. Novi formy profiliv lopatei vertykalno-osovykh vitroustanovok serednyoji shvydkokhidnosti. [New forms of profiles of blades vertical-axial wind stations with average rapidity]. Dissertation. Sumy, 2005, 160 р. (in Ukrainian) Search in Google Scholar

[18] V.M. Kovalenko, et al. Vetrokoleso [Wind turbine]. Patent USSR, no. 176549368, 1992. (in Russian) Search in Google Scholar

[19] L.G. Rozhkova. Lopast’ vetrokolesa [Blade of wind turbine]. Patent USSR, no. 1815409, 1993. (in Russian) Search in Google Scholar

[20] L.G. Rozhkova and E.G. Kuznetsov. Vitrokoleso vertykalnoossyovoji vitroustanovky z lopatyamy typu KN [Wind turbine of vertical-axial wind station with blades of KN type]. Patent Ukraine, no. 124107, 2018. (in Ukrainian) Search in Google Scholar

[21] A. Panda, Š. Olejárová, J. Valíček and M. Harničárová. “Monitoring of the condition of turning machine bearing housing through vibrations”. International Journal of Advanced Manufacturing Technology, vol. 97, no. 1-4, pp. 401-411, 2018.10.1007/s00170-018-1871-7 Search in Google Scholar

[22] M. Rimar, M. Fedak, A. Kulikov and P. Smeringai. “Study of gaseous flows in closed area with forced ventilation”. MM Science Journal, vol. 2018, no. March, pp. 2188-2191, 2018. Search in Google Scholar

[23] A. Panda, V. Nahornyi, I. Pandová, M. Harničárová, M. Kušnerová, J. Valíček and J. Kmec. “Development of the method for predicting the resource of mechanical systems”. International Journal of Advanced Manufacturing Technology, vol. 105, no. 1-4, pp. 1563-1571, 2019. Search in Google Scholar

[24] S. Olejarova, J. Dobransky, J. Svetlik and M. Pituk. “Measurements and evaluation of measurements of vibrations in steel milling process”. Measurement, vol. 106, pp. 18-25, 2017. ISSN 0263-2241.10.1016/j.measurement.2017.04.023 Search in Google Scholar

[25] J. Valicek, M. Harnicarova, I. Kopal, Z. Palková, M. Kušnerová, A. Panda and V. Šepelák. “Identification of Upper and Lower Level Yield strength in Materials”. Materials, vol. 10, no. 9, pp. 1-20, 2017.10.3390/ma10090982561563728832526 Search in Google Scholar

[26] A. Panda and J. Duplak. “Comparison of theory and practice in analytical expression of cutting tools durability for potential use at manufacturing of bearings”. Applied Mechanics and Materials, vol. 616, pp. 300-307, 2014.10.4028/www.scientific.net/AMM.616.300 Search in Google Scholar

[27] A. Panda, K. Dyadyura, J. Valicek, M. Harnicarova, J. Zajac, V. Modrak, I. Pandova, P. Vrabel, E. Novakova-Marcincinova and Z. Pavelek. “Manufacturing Technology of Composite Materials – Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene”. Materials, vol. 10, no. 4, pp. 337, 2017.10.3390/ma10040377550690828772733 Search in Google Scholar

[28] A.S. Chaus, et al. “Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate”. Applied Surface Science, vol. 437, pp. 257-270, 2018.10.1016/j.apsusc.2017.12.173 Search in Google Scholar

[29] W. Bialy and J. Ružbarský. “Breakdown cause and effect analysis. Case study”. Management Systems in Production Engineering, vol. 26, pp. 83-87, 2018.10.1515/mspe-2018-0013 Search in Google Scholar

[30] A. Panda, J. Dobránsky, M. Jančík, I. Pandová and M. Kačalová. “Advantages and effectiveness of the powder metallurgy in manufacturing technologies”. Metalurgija, vol. 57, no. 4, pp. 353-356, 2018. Search in Google Scholar

[31] K. Monkova and P. Monka. “Some aspects influencing production of porous structures with complex shapes of cells”. Lecture Notes in Mechanical Engineering, pp. 267-276, 2017.10.1007/978-3-319-56430-2_19 Search in Google Scholar

[32] Ľ. Straka, I. Čorný and J. Piteľ. “Prediction of the geometrical accuracy of the machined surface of the tool steel EN X30WCrV9-3 after electrical discharge machining with CuZn37 wire electrode”. Metals, vol. 7, no. 11, pp. 1-19, 2017.10.3390/met7110462 Search in Google Scholar

[33] Ľ. Straka, I. Čorný and J. Piteľ. “Properties evaluation of thin microhardened surface layer of tool steel after wire EDM”. Metals, vol. 6, no. 5, pp. 1-16, 2016.10.3390/met6050095 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo