Otwarty dostęp

Comparison of spinning trajectory designing methods for products with noncircular cross-section


Zacytuj

Runge M. Spinning and flow forming: spinning and flow forming technology, product design, equipment, control systems. Radevormwald: Lippert Druck GmbH; 1993. RungeM Spinning and flow forming: spinning and flow forming technology, product design, equipment, control systems Radevormwald Lippert Druck GmbH 1993 Search in Google Scholar

Grainger JA. The flow turning of metals. Eastbourne and London: The Machinery Publishing Co. Ltd.; 1969. GraingerJA The flow turning of metals Eastbourne and London The Machinery Publishing Co. Ltd. 1969 Search in Google Scholar

Meshcherin VT. Listovaya Shtampovka. Moskva: Mashinostroyenie; 1975. MeshcherinVT Listovaya Shtampovka Moskva Mashinostroyenie 1975 Search in Google Scholar

Arai H. Force-controlled metal spinning machine using linear motors. Proc IEEE Int Conf Robot Autom. 2006;2006:4031–6. https://doi.org/10.1109/ROBOT.2006.1642321. AraiH Force-controlled metal spinning machine using linear motors Proc IEEE Int Conf Robot Autom 2006 2006 4031 6 https://doi.org/10.1109/ROBOT.2006.1642321. 10.1109/ROBOT.2006.1642321 Search in Google Scholar

Shimizu I. Asymmetric forming of aluminum sheets by synchronous spinning. J Mater Process Technol. 2010;210:585–92. https://doi.org/10.1016/j.jmatprotec.2009.11.002. ShimizuI Asymmetric forming of aluminum sheets by synchronous spinning J Mater Process Technol 2010 210 585 92 https://doi.org/10.1016/j.jmatprotec.2009.11.002. 10.1016/j.jmatprotec.2009.11.002 Search in Google Scholar

Jia Z, Han Z, Liu B, Xiao Y. Work hardening of non-axisymmetric die-less spinning. J Mech Eng. 2017;63:111–8. https://doi.org/10.5545/sv-jme.2016.3589. JiaZ HanZ LiuB XiaoY Work hardening of non-axisymmetric die-less spinning J Mech Eng 2017 63 111 8 https://doi.org/10.5545/sv-jme.2016.3589. 10.5545/sv-jme.2016.3589 Search in Google Scholar

Jia Z, Han ZR, Liu BM, Fan ZJ. Numerical simulation and experimental study on the non-axisymmetric die-less shear spinning. Int J Adv Manuf Technol. 2017;92:497–504. https://doi.org/10.1007/s00170-017-0172-x. JiaZ HanZR LiuBM FanZJ Numerical simulation and experimental study on the non-axisymmetric die-less shear spinning Int J Adv Manuf Technol 2017 92 497 504 https://doi.org/10.1007/s00170-017-0172-x. 10.1007/s00170-017-0172-x Search in Google Scholar

Awiszus B, Härtel S. Numerical simulation of non-circular spinning: a rotationally non-symmetric spinning process. Prod Eng. 2011;5:605–12. https://doi.org/10.1007/s11740-011-0335-9. AwiszusB HärtelS Numerical simulation of non-circular spinning: a rotationally non-symmetric spinning process Prod Eng 2011 5 605 12 https://doi.org/10.1007/s11740-011-0335-9. 10.1007/s11740-011-0335-9 Search in Google Scholar

Sugita Y, Arai H. Formability in synchronous multipass spinning using simple pass set. J Mater Process Technol. 2015;217:336–44. https://doi.org/10.1016/j.jmatprotec.2014.11.017. SugitaY AraiH Formability in synchronous multipass spinning using simple pass set J Mater Process Technol 2015 217 336 44 https://doi.org/10.1016/j.jmatprotec.2014.11.017. 10.1016/j.jmatprotec.2014.11.017 Search in Google Scholar

Polyblank JA, Allwood JM. Parametric toolpath design in metal spinning. CIRP Ann Manuf Technol. 2015;64:301–4. https://doi.org/10.1016/j.cirp.2015.04.077. PolyblankJA AllwoodJM Parametric toolpath design in metal spinning CIRP Ann Manuf Technol 2015 64 301 4 https://doi.org/10.1016/j.cirp.2015.04.077. 10.1016/j.cirp.2015.04.077 Search in Google Scholar

Arai H, Gondo S. Oblique/curved tube necking formed by synchronous multipass spinning. Metals. 2020;10:733. https://doi.org/10.3390/met10060733. AraiH GondoS Oblique/curved tube necking formed by synchronous multipass spinning Metals 2020 10 733 https://doi.org/10.3390/met10060733. 10.3390/met10060733 Search in Google Scholar

Loukaides EG, Russo IM. Toolpath generation for asymmetric mandrel-free spinning. Procedia Eng. 2017;207:1707–12. https://doi.org/10.1016/j.proeng.2017.10.926. LoukaidesEG RussoIM Toolpath generation for asymmetric mandrel-free spinning Procedia Eng 2017 207 1707 12 https://doi.org/10.1016/j.proeng.2017.10.926. 10.1016/j.proeng.2017.10.926 Search in Google Scholar

Rentsch B, Manopulo N, Hora P. Numerical modelling, validation and analysis of multi-pass sheet metal spinning processes. Int J Mater Form. 2017;10:641–51. https://doi.org/10.1007/s12289-016-1308-5. RentschB ManopuloN HoraP Numerical modelling, validation and analysis of multi-pass sheet metal spinning processes Int J Mater Form 2017 10 641 51 https://doi.org/10.1007/s12289-016-1308-5. 10.1007/s12289-016-1308-5 Search in Google Scholar

Yaman K, Özcan M, Tekiner Z. Determination of the spinning parameters of AISI 304L stainless steel by using finite element method. J Fac Eng Archit Gazi Univ. 2018;33:299–311. https://doi.org/10.17341/gazimmfd.406802. YamanK ÖzcanM TekinerZ Determination of the spinning parameters of AISI 304L stainless steel by using finite element method J Fac Eng Archit Gazi Univ 2018 33 299 311 https://doi.org/10.17341/gazimmfd.406802. 10.17341/gazimmfd.406802 Search in Google Scholar

Sedighi M, Jalili I, Kasaeian-Naeini M. Experimental study and FEM analysis of forward hot dieless spinning. Mechanics and Industry 2018;19. https://doi.org/10.1051/MECA/2018034. SedighiM JaliliI Kasaeian-NaeiniM Experimental study and FEM analysis of forward hot dieless spinning Mechanics and Industry 2018 19 https://doi.org/10.1051/MECA/2018034. 10.1051/meca/2018034 Search in Google Scholar

Music O, Allwood JM, Kawai K. A review of the mechanics of metal spinning. J Mater Process Technol. 2010;210:3–23. https://doi.org/10.1016/J.JMATPROTEC.2009.08.021. MusicO AllwoodJM KawaiK A review of the mechanics of metal spinning J Mater Process Technol 2010 210 3 23 https://doi.org/10.1016/J.JMATPROTEC.2009.08.021. 10.1016/j.jmatprotec.2009.08.021 Search in Google Scholar

Wang Q, Wang T, Wang ZR. A study of the working force in conventional spinning. In: Proceedings of the Fourth International Conference of Rotary Forming, 1989, pp. 103–8. WangQ WangT WangZR A study of the working force in conventional spinning In: Proceedings of the Fourth International Conference of Rotary Forming 1989 103 8 Search in Google Scholar

Kim JH, Park JH, Kim C. A study on the mechanics of shear spinning of cones. J Mech Sci Technol. 2006;20:806–18. https://doi.org/10.1007/BF02915944. KimJH ParkJH KimC A study on the mechanics of shear spinning of cones J Mech Sci Technol 2006 20 806 18 https://doi.org/10.1007/BF02915944. 10.1007/BF02915944 Search in Google Scholar

Hayama M, Murota T, Kudo H. Deformation modes and wrinkling of flange on shear spinning. Bull Japan Soc Mech Eng. 1966;9:423–33. https://doi.org/10.1299/JSME1958.9.423. HayamaM MurotaT KudoH Deformation modes and wrinkling of flange on shear spinning Bull Japan Soc Mech Eng 1966 9 423 33 https://doi.org/10.1299/JSME1958.9.423. 10.1299/jsme1958.9.423 Search in Google Scholar

Quigley E, Monaghan J. Metal forming: an analysis of spinning processes. J Mater Process Technol. 2000;103:114–9. https://doi.org/10.1016/S0924-0136(00)00394-0. QuigleyE MonaghanJ Metal forming: an analysis of spinning processes J Mater Process Technol 2000 103 114 9 https://doi.org/10.1016/S0924-0136(00)00394-0. 10.1016/S0924-0136(00)00394-0 Search in Google Scholar

Alberti N, Cannizzaro L, Lo Valvo E, Micari F. Analysis of metal spinning processes by the ADINA code. Comput Struct. 1989;32:517–25. https://doi.org/10.1016/0045-7949(89)90343-X. AlbertiN CannizzaroL Lo ValvoE MicariF Analysis of metal spinning processes by the ADINA code Comput Struct 1989 32 517 25 https://doi.org/10.1016/0045-7949(89)90343-X. 10.1016/0045-7949(89)90343-X Search in Google Scholar

Lu XY, Zhang S, Hou H, Li JZ, Zhou LX, Li ZQ. Three dimensional fe analysis on flange bending for TC4 alloy during shear spinning. J Mater Sci Technol. 2006;22:855–9. LuXY ZhangS HouH LiJZ ZhouLX LiZQ Three dimensional fe analysis on flange bending for TC4 alloy during shear spinning J Mater Sci Technol 2006 22 855 9 Search in Google Scholar

Zhan M, Yang H, Zhang JH, Xu YL, Ma F. 3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning. J Mater Process Technol. 2007;187–188:486–91. https://doi.org/10.1016/j.jmatprotec.2006.11.114. ZhanM YangH ZhangJH XuYL MaF 3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning J Mater Process Technol 2007 187–188 486 91 https://doi.org/10.1016/j.jmatprotec.2006.11.114. 10.1016/j.jmatprotec.2006.11.114 Search in Google Scholar

Xia QX, Lai ZY, Long H, Cheng XQ. A study of the spinning force of hollow parts with triangular cross sections. Int J Adv Manuf Technol. 2013;68:2461–70. https://doi.org/10.1007/s00170-013-4847-7. XiaQX LaiZY LongH ChengXQ A study of the spinning force of hollow parts with triangular cross sections Int J Adv Manuf Technol 2013 68 2461 70 https://doi.org/10.1007/s00170-013-4847-7. 10.1007/s00170-013-4847-7 Search in Google Scholar

eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties