Otwarty dostęp

Fabrication and amplified spontaneous emission behavior of FAPbBr3 perovskite quantum dots in solid polymer rods


Zacytuj

Murawski C, Leo K, Gather MC. Efficiency roll-off in organic light-emitting diodes. Adv Mater. 2013;25:6801. https://doi.org/10.1002/adma.201301603 MurawskiC LeoK GatherMC Efficiency roll-off in organic light-emitting diodes Adv Mater 2013 25 6801 https://doi.org/10.1002/adma.201301603 10.1002/adma.20130160324019178 Search in Google Scholar

Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539. https://doi.org/10.1038/347539a0 BurroughesJH BradleyDDC BrownAR MarksRN MackayK FriendRH Light-emitting diodes based on conjugated polymers Nature 1990 347 539 https://doi.org/10.1038/347539a0 10.1038/347539a0 Search in Google Scholar

Coe S, Woo WK, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature. 2002;420:800. https://doi.org/10.1038/nature01217 CoeS WooWK BawendiM BulovićV Electroluminescence from single monolayers of nanocrystals in molecular organic devices Nature 2002 420 800 https://doi.org/10.1038/nature01217 10.1038/nature0121712490945 Search in Google Scholar

Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271(5251):933. https://doi.org/10.1126/science.271.5251.933 AlivisatosAP Semiconductor clusters, nanocrystals, and quantum dots Science 1996 271 5251 933 https://doi.org/10.1126/science.271.5251.933 10.1126/science.271.5251.933 Search in Google Scholar

Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics. 2013;7:13. https://doi.org/10.1038/nphoton.2012.328 ShirasakiY SupranGJ BawendiMG BulovicV Emergence of colloidal quantum-dot light-emitting technologies Nat Photonics 2013 7 13 https://doi.org/10.1038/nphoton.2012.328 10.1038/nphoton.2012.328 Search in Google Scholar

Sjoerd AV, Pablo PB, Natalia Y, Mingjie L, Tze CS, Nripan M, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater. 2016;28(22):6804–34. https://doi.org/10.1002/adma.201600669 SjoerdAV PabloPB NataliaY MingjieL TzeCS NripanM Perovskite materials for light-emitting diodes and lasers Adv Mater 2016 28 22 6804 34 https://doi.org/10.1002/adma.201600669 10.1002/adma.20160066927214091 Search in Google Scholar

Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater. 2014;13:476–80. https://doi.org/10.1038/nmat3911 XingG MathewsN LimSS YantaraN LiuX SabbaD Low-temperature solution-processed wavelength-tunable perovskites for lasing Nat Mater 2014 13 476 80 https://doi.org/10.1038/nmat3911 10.1038/nmat391124633346 Search in Google Scholar

Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342:341. https://doi.org/10.1126/science.1243982 StranksSD EperonGE GranciniG MenelaouC AlcocerMJP LeijtensT Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber Science 2013 342 341 https://doi.org/10.1126/science.1243982 10.1126/science.124398224136964 Search in Google Scholar

Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 2014;9(9):687–92. https://doi.org/10.1038/nnano.2014.149 TanZK MoghaddamRS LaiML DocampoP HiglerR DeschlerF Bright light-emitting diodes based on organometal halide perovskite Nat Nanotechnol 2014 9 9 687 92 https://doi.org/10.1038/nnano.2014.149 10.1038/nnano.2014.14925086602 Search in Google Scholar

Li G, Rivarola FWR, Davis Nathaniel JLK, Bai S, Jellicoe TC, de la Penã F, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater. 2016;28(18):3528–34. https://doi.org/10.1002/adma.201600064 LiG RivarolaFWR Davis NathanielJLK BaiS JellicoeTC de la PenãF Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method Adv Mater 2016 28 18 3528 34 https://doi.org/10.1002/adma.201600064 10.1002/adma.20160006426990965 Search in Google Scholar

Cho H, Jeong SH, Park MH, Kim YH, Wolf C, Lee CL, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science. 2015;350(6265):1222. https://doi.org/10.1126/science.aad1818 ChoH JeongSH ParkMH KimYH WolfC LeeCL Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes Science 2015 350 6265 1222 https://doi.org/10.1126/science.aad1818 10.1126/science.aad181826785482 Search in Google Scholar

Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites. Acta Crystallogr Sect B Struct Sci. 2008;64:702. https://doi.org/10.1107/S0108768108032734 LiC LuX DingW FengL GaoY GuoZ Formability of ABX3 (X=F, Cl, Br, I) halide perovskites Acta Crystallogr Sect B Struct Sci 2008 64 702 https://doi.org/10.1107/S0108768108032734 10.1107/S010876810803273419029699 Search in Google Scholar

Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014;8:506. https://doi.org/10.1038/nphoton.2014.134 GreenMA Ho-BaillieA SnaithHJ The emergence of perovskite solar cells Nat Photonics 2014 8 506 https://doi.org/10.1038/nphoton.2014.134 10.1038/nphoton.2014.134 Search in Google Scholar

Kieslich G, Sun S, Cheetham AK. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem Sci. 2014;5:4712–15. https://doi.org/10.1039/C4SC02211D KieslichG SunS CheethamAK Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog Chem Sci 2014 5 4712 15 https://doi.org/10.1039/C4SC02211D 10.1039/C4SC02211D Search in Google Scholar

Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park, NG. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater. 2015;5. https://doi.org/10.1002/aenm.201501310 LeeJW KimDH KimHS SeoSW ChoSM ParkNG Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell Adv Energy Mater 2015 5 https://doi.org/10.1002/aenm.201501310 10.1002/aenm.201501310 Search in Google Scholar

Giles EE, Daniel B, Joel T, Samuel DS, Michael BJ, Trystan W, et al. Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite. J Phys Chem Lett. 2015;6(1):129–38. https://doi.org/10.1021/jz502367k GilesEE DanielB JoelT SamuelDS MichaelBJ TrystanW Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite J Phys Chem Lett 2015 6 1 129 38 https://doi.org/10.1021/jz502367k 10.1021/jz502367k26263101 Search in Google Scholar

Mitzi DB, Field CA, Schlesinger Z, Laibowitz RB. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J Solid State Chem. 1995;114:159–63. https://doi.org/10.1006/jssc.1995.1023 MitziDB FieldCA SchlesingerZ LaibowitzRB Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3 J Solid State Chem 1995 114 159 63 https://doi.org/10.1006/jssc.1995.1023 10.1006/jssc.1995.1023 Search in Google Scholar

Chondroudis K, Mitzi DB. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater. 1999;11:3028–30. https://doi.org/10.1021/cm990561t ChondroudisK MitziDB Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers Chem Mater 1999 11 3028 30 https://doi.org/10.1021/cm990561t 10.1021/cm990561t Search in Google Scholar

Pedesseau L. et al. Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications. Opt Quantum Electron. 2014;46;1225–32. https://doi.org/10.1007/s11082-013-9823-9 PedesseauL Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications Opt Quantum Electron 2014 46 1225 32 https://doi.org/10.1007/s11082-013-9823-9 10.1007/s11082-013-9823-9 Search in Google Scholar

Kumawat NK, Dey A, Kumar A, Gopinathan SP, Narasimhan K.L, Kabra D. Band gap tuning of CH3NH3Pb(Br1−xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces. 2015;7:13119. https://doi.org/10.1021/acsami.5b02159 KumawatNK DeyA KumarA GopinathanSP NarasimhanK.L KabraD Band gap tuning of CH3NH3Pb(Br1−xClx)3 hybrid perovskite for blue electroluminescence ACS Appl Mater Interfaces 2015 7 13119 https://doi.org/10.1021/acsami.5b02159 10.1021/acsami.5b0215926050553 Search in Google Scholar

Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 2014;7:982–8. https://doi.org/10.1039/C3EE43822H EperonGE StranksSD MenelaouC JohnstonMB HerzLM SnaithHJ Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells Energy Environ Sci 2014 7 982 8 https://doi.org/10.1039/C3EE43822H 10.1039/c3ee43822h Search in Google Scholar

Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13:1764–9. https://doi.org/10.1021/nl400349b NohJH ImSH HeoJH MandalTN SeokSI Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells Nano Lett 2013 13 1764 9 https://doi.org/10.1021/nl400349b 10.1021/nl400349b Search in Google Scholar

Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. Anomalous band gap behavior in mixed sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc. 2014;136:8094. https://doi.org/10.1021/ja5033259 HaoF StoumposCC ChangRPH KanatzidisMG Anomalous band gap behavior in mixed sn and Pb perovskites enables broadening of absorption spectrum in solar cells J Am Chem Soc 2014 136 8094 https://doi.org/10.1021/ja5033259 10.1021/ja5033259 Search in Google Scholar

Ogomi Y, Morita A, Tsukamoto S, Satiro T, Fujiyama N, Shen Q, et al. CH3NH3SnxPb(1−−x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett. 2014;5:1004–11. https://doi.org/10.1021/jz5002117 OgomiY MoritaA TsukamotoS SatiroT FujiyamaN ShenQ CH3NH3SnxPb(1−−x)I3 perovskite solar cells covering up to 1060 nm J Phys Chem Lett 2014 5 1004 11 https://doi.org/10.1021/jz5002117 10.1021/jz5002117 Search in Google Scholar

Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett. 1994;65:676. https://doi.org/10.1063/1.112265 EraM MorimotoS TsutsuiT SaitoS Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 Appl Phys Lett 1994 65 676 https://doi.org/10.1063/1.112265 10.1063/1.112265 Search in Google Scholar

Hong X, Ishihara T, Nurmikko AV. Photoconductivity and electroluminescence in lead iodide based natural quantum well structures. Solid State Commun. 1992;84:657. https://doi.org/10.1016/0038-1098(92)90210-Z HongX IshiharaT NurmikkoAV Photoconductivity and electroluminescence in lead iodide based natural quantum well structures Solid State Commun 1992 84 657 https://doi.org/10.1016/0038-1098(92)90210-Z 10.1016/0038-1098(92)90210-Z Search in Google Scholar

Hattori T, Taira T, Era M, Tsutsui T, Saito S. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem Phys Lett. 1996;254:103–8. https://doi.org/10.1016/0009-2614(96)00310-7 HattoriT TairaT EraM TsutsuiT SaitoS Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound Chem Phys Lett 1996 254 103 8 https://doi.org/10.1016/0009-2614(96)00310-7 10.1016/0009-2614(96)00310-7 Search in Google Scholar

Kondo T, Azuma T, Yuasa T, Ito R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998;105:253–5. https://doi.org/10.1016/S0038-1098(97)10085-0 KondoT AzumaT YuasaT ItoR Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4 Solid State Commun 1998 105 253 5 https://doi.org/10.1016/S0038-1098(97)10085-0 10.1016/S0038-1098(97)10085-0 Search in Google Scholar

Wang J, Wang N, Jin Y, Si J, Tan ZK, Du H, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater. 2015;27(14):2311–6. https://doi.org/10.1002/adma.201405217 WangJ WangN JinY SiJ TanZK DuH Interfacial control toward efficient and low-voltage perovskite light-emitting diodes Adv Mater 2015 27 14 2311 6 https://doi.org/10.1002/adma.201405217 10.1002/adma.20140521725708283 Search in Google Scholar

Michael ML, Joël T, Tsutomu M, Takurou NM, Henry JS. Efficient hybrid solar cells based on Meso-Superstructured Organometal Halide Perovskites. Science. 2012;80. https://doi.org/10.1126/science.1228604 MichaelML JoëlT TsutomuM TakurouNM HenryJS Efficient hybrid solar cells based on Meso-Superstructured Organometal Halide Perovskites Science 2012 80 https://doi.org/10.1126/science.1228604 10.1126/science.122860423042296 Search in Google Scholar

Chen S, Roh K, Lee J, Chong WK, Lu Y, Mathews N. et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 2016;10;3959–67. https://doi.org/10.1021/acsnano.5b08153 ChenS RohK LeeJ ChongWK LuY MathewsN A photonic crystal laser from solution based organo-lead iodide perovskite thin films ACS Nano 2016 10 3959 67 https://doi.org/10.1021/acsnano.5b08153 10.1021/acsnano.5b0815326997122 Search in Google Scholar

Sutherland BR, Sargent EH. Perovskite photonic sources. Nat Photonics. 2016;10:295–302. https://doi.org/10.1038/nphoton.2016.62 SutherlandBR SargentEH Perovskite photonic sources Nat Photonics 2016 10 295 302 https://doi.org/10.1038/nphoton.2016.62 10.1038/nphoton.2016.62 Search in Google Scholar

Mitzi DB, Wang S, Field CA, Chess CA, Guloy AM. Conducting layered organic-inorganic halides containing <110>oriented perovskite sheets. Science. 1995;80:267(5203):1473–6. https://doi.org/10.1126/science.267.5203.1473 MitziDB WangS FieldCA ChessCA GuloyAM Conducting layered organic-inorganic halides containing <110>oriented perovskite sheets Science 1995 80 267 5203 1473 6 https://doi.org/10.1126/science.267.5203.1473 10.1126/science.267.5203.147317743545 Search in Google Scholar

Young HK et al. Multicolored organic/inorganic hybrid perovskite light emitting diodes. Adv Mater. 2015;27(7):1248–54. https://doi.org/10.1002/adma.201403751 YoungHK Multicolored organic/inorganic hybrid perovskite light emitting diodes Adv Mater 2015 27 7 1248 54 https://doi.org/10.1002/adma.201403751 10.1002/adma.20140375125420784 Search in Google Scholar

Wei T, Huanping Z, Liang L. Hybrid organic-inorganic perovskite photodetectors. Small. 2017;41:1702107. https://doi.org/10.1002/smll.201702107 WeiT HuanpingZ LiangL Hybrid organic-inorganic perovskite photodetectors Small 2017 41 1702107. https://doi.org/10.1002/smll.201702107 10.1002/smll.20170210728895306 Search in Google Scholar

Dou L, Yang Y, You J, Hong Z, Chang WH, Li G, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun. 2014;5:5404. https://doi.org/10.1038/ncomms6404 DouL YangY YouJ HongZ ChangWH LiG Solution-processed hybrid perovskite photodetectors with high detectivity Nat Commun 2014 5 5404 https://doi.org/10.1038/ncomms6404 10.1038/ncomms640425410021 Search in Google Scholar

Zhuo S, Zhang J., Shi Y, Huang Y, Zhang B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew Chem Int Ed. 2015;54:5693. https://doi.org/10.1002/anie.201411956 ZhuoS ZhangJ. ShiY HuangY ZhangB Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors Angew Chem Int Ed 2015 54 5693 https://doi.org/10.1002/anie.201411956 10.1002/anie.20141195625776103 Search in Google Scholar

Maculan G, Sheikh AD, Abdelhady A, Saidaminov MI, Haque MA, Murali B, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett. 2015;6:3781–6. https://doi.org/10.1021/acs.jpclett.5b01666 MaculanG SheikhAD AbdelhadyA SaidaminovMI HaqueMA MuraliB CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector J Phys Chem Lett 2015 6 3781 6 https://doi.org/10.1021/acs.jpclett.5b01666 10.1021/acs.jpclett.5b0166626722870 Search in Google Scholar

Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD, Higler R, et al.. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett. 2014;5:1421. https://doi.org/10.1021/jz5005285 DeschlerF PriceM PathakS KlintbergLE JarauschDD HiglerR High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors J Phys Chem Lett 2014 5 1421 https://doi.org/10.1021/jz5005285 10.1021/jz500528526269988 Search in Google Scholar

Saif MHQ, Khan MN, Alqasem A, Hezam M, Aldwayyan AA. Restraining effect of film thickness on the behavior of amplified spontaneous emission from methylammonium lead iodide perovskite. IET Optoelectronics. 2018;13(1):2–6. https://doi.org/10.1049/iet-opt.2018.5035 SaifMHQ KhanMN AlqasemA HezamM AldwayyanAA Restraining effect of film thickness on the behavior of amplified spontaneous emission from methylammonium lead iodide perovskite IET Optoelectronics 2018 13 1 2 6 https://doi.org/10.1049/iet-opt.2018.5035 10.1049/iet-opt.2018.5035 Search in Google Scholar

Zhu, H., et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater. 2015;14:636–42. https://doi.org/10.1038/nmat4271 ZhuH. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors Nat Mater 2015 14 636 42 https://doi.org/10.1038/nmat4271 10.1038/nmat427125849532 Search in Google Scholar

Qing Z, et al., Advances in small perovskite based lasers. Small Methods. 2017;1(9):1700163. https://doi.org/10.1002/smtd.201700163 QingZ Advances in small perovskite based lasers Small Methods 2017 1 9 1700163. https://doi.org/10.1002/smtd.201700163 10.1002/smtd.201700163 Search in Google Scholar

Sutherland BR, Hoogland S, Adachi MM, Wong CT, Sargent EH. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano. 2014;8(10):10947–52. https://doi.org/10.1021/nn504856g SutherlandBR HooglandS AdachiMM WongCT SargentEH Conformal organohalide perovskites enable lasing on spherical resonators ACS Nano 2014 8 10 10947 52 https://doi.org/10.1021/nn504856g 10.1021/nn504856g25313937 Search in Google Scholar

Stranks SD, Wood SM, Wojciechowski K, Deschler F, Saliba M, Khandelwal H, et al. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector. Nano Lett. 2015;15(8):4935–41. https://doi.org/10.1021/acs.nanolett.5b00678 StranksSD WoodSM WojciechowskiK DeschlerF SalibaM KhandelwalH Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector Nano Lett 2015 15 8 4935 41 https://doi.org/10.1021/acs.nanolett.5b00678 10.1021/acs.nanolett.5b0067825989354 Search in Google Scholar

Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014;14:5995. https://doi.org/10.1021/nl503057g ZhangQ HaST LiuX SumTC XiongQ Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers Nano Lett 2014 14 5995 https://doi.org/10.1021/nl503057g 10.1021/nl503057g25118830 Search in Google Scholar

Dhanker R., et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl Phys Lett. 2014;105:151112. https://doi.org/10.1063/1.4898703 DhankerR. Random lasing in organo-lead halide perovskite microcrystal networks Appl Phys Lett 2014 105 151112 https://doi.org/10.1063/1.4898703 10.1063/1.4898703 Search in Google Scholar

Saliba M, Wood SM, Patel JB, Nayak PK, Huang J, Alexander-Webber JA, et al. Structured organic-inorganic perovskite toward a distributed feedback laser. Adv Mater. 2016;28:923–8. https://doi.org/10.1002/adma.201502608 SalibaM WoodSM PatelJB NayakPK HuangJ Alexander-WebberJA Structured organic-inorganic perovskite toward a distributed feedback laser Adv Mater 2016 28 923 8 https://doi.org/10.1002/adma.201502608 10.1002/adma.20150260826630410 Search in Google Scholar

Liao Q, Hu K, Zhang HH, Wang XD, Yao JN, Fu HB. Perovskite microdisk microlasers self-assembled from solution. Adv Mater. 2015;27(24):3405. https://doi.org/10.1002/adma.201500449 LiaoQ HuK ZhangHH WangXD YaoJN FuHB Perovskite microdisk microlasers self-assembled from solution Adv Mater 2015 27 24 3405 https://doi.org/10.1002/adma.201500449 10.1002/adma.20150044925903387 Search in Google Scholar

Chen J, Zhou S, Jin S, Li H, Zhai T, Gaál R, et al. Crystal organometal halide perovskites with promising optoelectronic applications. J Mater Chem C. 2016;4:11–27. https://doi.org/10.1039/C5TC03417E ChenJ ZhouS JinS LiH ZhaiT GaálR Crystal organometal halide perovskites with promising optoelectronic applications J Mater Chem C 2016 4 11 27 https://doi.org/10.1039/C5TC03417E 10.1039/C5TC03417E Search in Google Scholar

Audebert P, Clavier G, Alain-Rizzo V, Deleporte E, Zhang S, Lauret JSB, et al. Synthesis of new perovskite luminescent nanoparticles in the visible range. Chem Mater. 2009;21:210–14. https://doi.org/10.1021/cm8020462 AudebertP ClavierG Alain-RizzoV DeleporteE ZhangS LauretJSB Synthesis of new perovskite luminescent nanoparticles in the visible range Chem Mater 2009 21 210 14 https://doi.org/10.1021/cm8020462 10.1021/cm8020462 Search in Google Scholar

Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15:3692–6. https://doi.org/10.1021/nl5048779 ProtesescuL YakuninS BodnarchukMI KriegF CaputoR HendonCH Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut Nano Lett 2015 15 3692 6 https://doi.org/10.1021/nl5048779 10.1021/nl5048779446299725633588 Search in Google Scholar

Wang Y, Zhi M, Chang YQ, Zhang JP, Chan Y. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting Trion gain. Nano Lett. 2018;18:4976–84. https://doi.org/10.1021/acs.nanolett.8b01817 WangY ZhiM ChangYQ ZhangJP ChanY Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting Trion gain Nano Lett 2018 18 4976 84 https://doi.org/10.1021/acs.nanolett.8b01817 10.1021/acs.nanolett.8b0181730011210 Search in Google Scholar

Yakunin S, Protesescu L, Krieg F, Bodnarchuk MI, Nedelcu G, Humer M, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun. 2015;6:8056. https://doi.org/10.1038/ncomms9056 YakuninS ProtesescuL KriegF BodnarchukMI NedelcuG HumerM Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites Nat Commun 2015 6 8056 https://doi.org/10.1038/ncomms9056 10.1038/ncomms9056456079026290056 Search in Google Scholar

De Giorgi ML, Krieg F, Kovalenko MV, Anni M. Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr3 nanocrystals films by hydrophobic functionalization of the substrate. Sci Rep. 2019;9:17964. https://doi.org/10.1038/s41598-019-54412-7 De GiorgiML KriegF KovalenkoMV AnniM Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr3 nanocrystals films by hydrophobic functionalization of the substrate Sci Rep 2019 9 17964 https://doi.org/10.1038/s41598-019-54412-7 10.1038/s41598-019-54412-7688457131784597 Search in Google Scholar

Cho C, Palatnik A, Sudzius M, Grodofzig R, Nehm F, Leo K. Controlling and optimizing amplified spontaneous emission in perovskite. ACS Appl Mater Interfaces. 2020;12(31):35242–9. https://doi.org/10.1021/acsami.0c08870 ChoC PalatnikA SudziusM GrodofzigR NehmF LeoK Controlling and optimizing amplified spontaneous emission in perovskite ACS Appl Mater Interfaces 2020 12 31 35242 9 https://doi.org/10.1021/acsami.0c08870 10.1021/acsami.0c0887032658443 Search in Google Scholar

Leyden MR, Matsushim T, Qin Ch, Ruan S, Ye H, Adachi C. Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. Phys Chem Chem Phys. 2018;20:15030–6. https://doi.org/10.1039/C8CP02133C LeydenMR MatsushimT QinCh RuanS YeH AdachiC Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites Phys Chem Chem Phys 2018 20 15030 6 https://doi.org/10.1039/C8CP02133C 10.1039/C8CP02133C29789829 Search in Google Scholar

Aleksei OM, Stroganov BV, Günnemann C, Hammouda SB, Shurukhina AV, Lozhkin MS. et al. Amplified spontaneous emission and random lasing in MAPbBr3 halide perovskite single crystals. Adv Optical Mater. 2020;8(17):2000690. https://doi.org/10.1002/adom.202000690 AlekseiOM StroganovBV GünnemannC HammoudaSB ShurukhinaAV LozhkinMS Amplified spontaneous emission and random lasing in MAPbBr3 halide perovskite single crystals Adv Optical Mater 2020 8 17 2000690. https://doi.org/10.1002/adom.202000690 10.1002/adom.202000690 Search in Google Scholar

Zhang Q, Su R, Liu X, Xing J, Sum TC, Xiong Q. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater. 2016;26:6238–45. https://doi.org/10.1002/adfm.201601690 ZhangQ SuR LiuX XingJ SumTC XiongQ High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets Adv Funct Mater 2016 26 6238 45 https://doi.org/10.1002/adfm.201601690 10.1002/adfm.201601690 Search in Google Scholar

Liu S, Sun W, Li J, Gu Z, Wangm K, Xiao S, et al. Random lasing actions in self-assembled perovskite nanoparticles. Opt Eng. 2016;55(5):057102. https://doi.org/10.1117/1.OE.55.5.057102 LiuS SunW LiJ GuZ WangmK XiaoS Random lasing actions in self-assembled perovskite nanoparticles Opt Eng 2016 55 5 057102 https://doi.org/10.1117/1.OE.55.5.057102 10.1117/1.OE.55.5.057102 Search in Google Scholar

Saif MHQ, Al-Asbahi BA, Ghaithan HH, Alsalhi MS, Aldwayyan AS. Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films. J Colloid Interface Sci. 2020;563:426–34. https://doi.org/10.1016/j.jcis.2019.12.094 SaifMHQ Al-AsbahiBA GhaithanHH AlsalhiMS AldwayyanAS Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films J Colloid Interface Sci 2020 563 426 34 https://doi.org/10.1016/j.jcis.2019.12.094 10.1016/j.jcis.2019.12.09431896488 Search in Google Scholar

Wang Y, Xiaoming Li, Song J, Xiao L, Zeng H, Sun H. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv Mater. 2015;27:7101–8. https://doi.org/10.1002/adma.201503573 WangY XiaomingLi SongJ XiaoL ZengH SunH All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics Adv Mater 2015 27 7101 8 https://doi.org/10.1002/adma.201503573 10.1002/adma.20150357326448638 Search in Google Scholar

Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, et al. Quantum-dot-in-perovskite solids. Nature. 2015;324(523):2015. https://doi.org/10.1038/nature14563 NingZ GongX CominR WaltersG FanF VoznyyO Quantum-dot-in-perovskite solids Nature 2015 324 523 2015 https://doi.org/10.1038/nature14563 10.1038/nature1456326178963 Search in Google Scholar

Sun C, Zhang Y, Ruan C., et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater. 2016;28(45):10088–94. https://doi.org/10.1002/adma.201603081 SunC ZhangY RuanC Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots Adv Mater 2016 28 45 10088 94 https://doi.org/10.1002/adma.201603081 10.1002/adma.20160308127717018 Search in Google Scholar

Wei Y, Xiao H, Xie Z., et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv Opt Mater. 2018;6(11):1701343. https://doi.org/10.1002/adom.201701343 WeiY XiaoH XieZ. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes Adv Opt Mater 2018 6 11 1701343 https://doi.org/10.1002/adom.201701343 10.1002/adom.201701343 Search in Google Scholar

Yang G, Fan Q, Chen B, et al. Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nano-composites with enhanced stability. J Mater Chem C. 2016;4(48):11387–91. https://doi.org/10.1039/C6TC04069A YangG FanQ ChenB Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nano-composites with enhanced stability J Mater Chem C 2016 4 48 11387 91 https://doi.org/10.1039/C6TC04069A 10.1039/C6TC04069A Search in Google Scholar

Pang X, Zhang H, Xie L, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. J Mater Chem C. 2019;7(42):13139–48. https://doi.org/10.1039/C9TC04732H PangX ZhangH XieL Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays J Mater Chem C 2019 7 42 13139 48 https://doi.org/10.1039/C9TC04732H 10.1039/C9TC04732H Search in Google Scholar

Pan J, Sarmah SP, Murali B, Dursun I, Peng W, Parida MR, et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J Phys Chem Lett. 2015;6:5027–33. https://doi.org/10.1021/acs.jpclett.5b02460 PanJ SarmahSP MuraliB DursunI PengW ParidaMR Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission J Phys Chem Lett 2015 6 5027 33 https://doi.org/10.1021/acs.jpclett.5b02460 10.1021/acs.jpclett.5b0246026624490 Search in Google Scholar

Xiong Q, Huang S, Du J, Tang X, Zeng F, Liu Z, et al. Surface ligand engineering for CsPbBr3 quantum dots aiming at aggregation suppression and amplified spontaneous emission improvement. Adv Opt Mater. 2020;8:2000977. https://doi.org/10.1002/adom.202000977 XiongQ HuangS DuJ TangX ZengF LiuZ Surface ligand engineering for CsPbBr3 quantum dots aiming at aggregation suppression and amplified spontaneous emission improvement Adv Opt Mater 2020 8 2000977. https://doi.org/10.1002/adom.202000977 10.1002/adom.202000977 Search in Google Scholar

Moon H, Lee C, Lee W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater. 2019;31(34):1804294. https://doi.org/10.1002/adma.201804294 MoonH LeeC LeeW Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications Adv Mater 2019 31 34 1804294 https://doi.org/10.1002/adma.201804294 10.1002/adma.20180429430650209 Search in Google Scholar

Yang J, Siempelkamp BD, Liu D., et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano. 2015;9(2):1955–63. https://doi.org/10.1021/nn506864k YangJ SiempelkampBD LiuD. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques ACS Nano 2015 9 2 1955 63 https://doi.org/10.1021/nn506864k 10.1021/nn506864k25635696 Search in Google Scholar

Christians JA, Miranda HPA, Kamat PV. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc 2015;137(4);1530–8. https://doi.org/10.1021/ja511132a ChristiansJA MirandaHPA KamatPV Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air J Am Chem Soc 2015 137 4 1530 8 https://doi.org/10.1021/ja511132a 10.1021/ja511132a25590693 Search in Google Scholar

Palazon F, Di SF, Lauciello S, et al. Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere. J Mater Chem C. 2016;4(39):9179–82. https://doi.org/10.1039/C6TC03342C PalazonF DiSF LaucielloS Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere J Mater Chem C 2016 4 39 9179 82 https://doi.org/10.1039/C6TC03342C 10.1039/C6TC03342C Search in Google Scholar

Huang S, Li Z, Wang B, et al. Morphology evolution and degradation of CH3NH3PbI3 nanocrystals under blue light-emitting diode illumination. ACS Appl Mater Interfaces. 2017;9(8);7249–58. https://doi.org/10.1021/acsami.6b14423 HuangS LiZ WangB Morphology evolution and degradation of CH3NH3PbI3 nanocrystals under blue light-emitting diode illumination ACS Appl Mater Interfaces 2017 9 8 7249 58 https://doi.org/10.1021/acsami.6b14423 10.1021/acsami.6b1442328181794 Search in Google Scholar

Gong Y, Shen J, Zhu Y, Yang X, Zhang L, Li C. Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites. J Mater Chem C. 2020;8:1413–20. https://doi.org/10.1039/C9TC05966K GongY ShenJ ZhuY YangX ZhangL LiC Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites J Mater Chem C 2020 8 1413 20 https://doi.org/10.1039/C9TC05966K 10.1039/C9TC05966K Search in Google Scholar

Chen LC, Tien CH, Tseng ZL, Dong YS, Yang S. Influence of PMMA on all inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix. Materials. 2019;12:985. https://doi.org/10.3390/ma12060985 ChenLC TienCH TsengZL DongYS YangS Influence of PMMA on all inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix Materials 2019 12 985 https://doi.org/10.3390/ma12060985 10.3390/ma12060985647097130934571 Search in Google Scholar

Khan MN, Al Dwayyan AS, Al Salhi MS. Study on characteristics of silicon nanocrystals within sol-gel host. J Exp Nanosci. 2012;7(2):120. https://doi.org/10.1080/17458080.2010.513016 KhanMN Al DwayyanAS Al SalhiMS Study on characteristics of silicon nanocrystals within sol-gel host J Exp Nanosci 2012 7 2 120 https://doi.org/10.1080/17458080.2010.513016 10.1080/17458080.2010.513016 Search in Google Scholar

Khan MN, Al Dwayyan AS. Influence on structural and PL property of nanocrystals silicon doped sol gel matrix. J Optoelectron Adv Mater. 2012;14(5):448. KhanMN Al DwayyanAS Influence on structural and PL property of nanocrystals silicon doped sol gel matrix J Optoelectron Adv Mater 2012 14 5 448 Search in Google Scholar

Khan MN, Al Dwayyan AS, Al Hossain MS. Morphology and optical properties of a porous silicon-doped solgel host. Electron Mater Lett. 2013;9(5):697. https://doi.org/10.1080/17458080.2010.513016 KhanMN Al DwayyanAS Al HossainMS Morphology and optical properties of a porous silicon-doped solgel host Electron Mater Lett 2013 9 5 697 https://doi.org/10.1080/17458080.2010.513016 10.1007/s13391-013-2241-0 Search in Google Scholar

Khan MN, Aldalbahi A, Almohamedi A. Investigation of different colloidal porous silicon solutions and their composite solid matrix rods by optical techniques. J Electron Mater. 2018;47(7):3596–607. https://doi.org/10.1007/s11664-018-6204-y KhanMN AldalbahiA AlmohamediA Investigation of different colloidal porous silicon solutions and their composite solid matrix rods by optical techniques J Electron Mater 2018 47 7 3596 607 https://doi.org/10.1007/s11664-018-6204-y 10.1007/s11664-018-6204-y Search in Google Scholar

Khan MN, Aldalbahi A, Al Dwayyan AS. Composite rods based on nanoscale porous silicon in sol–gel silica and ormosil matrices for light-emitting applications. J Sol-Gel Sci Technol. 2017;82:551–62. https://doi.org/10.1007/s10971-017-4309-z KhanMN AldalbahiA Al DwayyanAS Composite rods based on nanoscale porous silicon in sol–gel silica and ormosil matrices for light-emitting applications J Sol-Gel Sci Technol 2017 82 551 62 https://doi.org/10.1007/s10971-017-4309-z 10.1007/s10971-017-4309-z Search in Google Scholar

Khan MN, Al Dwayyan AS, Aldalbahi A. Light emitting composite rods based on porous silicon in ormosils and polymer matrices for optical applications. Opt Laser Technol. 2017;91:203–11. https://doi.org/10.1016/j.optlastec.2016.12.035 KhanMN Al DwayyanAS AldalbahiA Light emitting composite rods based on porous silicon in ormosils and polymer matrices for optical applications Opt Laser Technol 2017 91 203 11 https://doi.org/10.1016/j.optlastec.2016.12.035 10.1016/j.optlastec.2016.12.035 Search in Google Scholar

eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties