Otwarty dostęp

Characterization study of polyAMPS@BMA core-shell particles using two types of RAFT agents


Zacytuj

Yang H, Qi D, Liu Z, Chandran BK, Wang T, Yu J, et al. Soft thermal sensor with mechanical adaptability. Adv Mater. 2016;28(41):9175–81. YangH QiD LiuZ ChandranBK WangT YuJ Soft thermal sensor with mechanical adaptability Adv Mater 2016 28 41 9175 81 10.1002/adma.201602994 Search in Google Scholar

Kozlovskaya V, Xue B, Kharlampieva E. shape-adaptable polymeric particles for controlled delivery. Macromolecules 2016:49(22):8373–8386. KozlovskayaV XueB KharlampievaE shape-adaptable polymeric particles for controlled delivery Macromolecules 2016 49 22 8373 8386 10.1021/acs.macromol.6b01740 Search in Google Scholar

Feldman D. Polymer nanocomposites in medicine. J Macromol Sci. 2016;53(1):55–62. FeldmanD Polymer nanocomposites in medicine J Macromol Sci 2016 53 1 55 62 10.1080/10601325.2016.1110459 Search in Google Scholar

Bag MA, Valenzuela LM. Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review. Int J Mol Sci. 2017;18(8):1422. BagMA ValenzuelaLM Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review Int J Mol Sci 2017 18 8 1422 10.3390/ijms18081422 Search in Google Scholar

Parhi R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv Pharm Bull. 2017;7(4):515–30. ParhiR Cross-linked hydrogel for pharmaceutical applications: A review Adv Pharm Bull 2017 7 4 515 30 10.15171/apb.2017.064 Search in Google Scholar

Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol. 2016;48:40–50. HamedI ÖzogulF RegensteinJM Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review Trends Food Sci Technol 2016 48 40 50 10.1016/j.tifs.2015.11.007 Search in Google Scholar

Wang X. Review of characterization methods for water-soluble polymers used in oil sand and heavy oil industrial applications. Environ Rev. 2016;24(4):460–70. WangX Review of characterization methods for water-soluble polymers used in oil sand and heavy oil industrial applications Environ Rev 2016 24 4 460 70 10.1139/er-2015-0094 Search in Google Scholar

Matyjaszewski K, Spanswick J. Controlled/living radical polymerization. Mater Today. 2005l;8(3):26–33. MatyjaszewskiK SpanswickJ Controlled/living radical polymerization Mater Today 2005l 8 3 26 33 10.1016/S1369-7021(05)00745-5 Search in Google Scholar

Moad G. A critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization. J Polym Sci Part A. 2019;57(3):216–27. MoadG A critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization J Polym Sci Part A 2019 57 3 216 27 10.1002/pola.29199 Search in Google Scholar

Keddie DJ, Moad G, Rizzardo E, Thang SH. RAFT agent design and synthesis. Macromolecules. 2012;45(13):5321–42. KeddieDJ MoadG RizzardoE ThangSH RAFT agent design and synthesis Macromolecules 2012 45 13 5321 42 10.1021/ma300410v Search in Google Scholar

Barner-Kowollik C, Davis TP, Stenzel MH. Synthesis of star polymers using RAFT polymerization: What is possible? Aust J Chem, 2006;59(10):719–27. Barner-KowollikC DavisTP StenzelMH Synthesis of star polymers using RAFT polymerization: What is possible? Aust J Chem 2006 59 10 719 27 10.1071/CH06297 Search in Google Scholar

Lewis RW, Malic N, Saito K, Evans RA, Cameron NR. Ultra-high molecular weight linear coordination polymers with terpyridine ligands. Chem Sci, 2019;10(24):6174–83. LewisRW MalicN SaitoK EvansRA CameronNR Ultra-high molecular weight linear coordination polymers with terpyridine ligands Chem Sci 2019 10 24 6174 83 10.1039/C9SC01115C658588431360424 Search in Google Scholar

Caminade AM, Beraa A, Laurent R, Delavaux-Nicot B, Hajjaji M. Dendrimers and hyper-branched polymers interacting with clays: Fruitful associations for functional materials. J Mater Chem A, 2019;7(34):19634–50. CaminadeAM BeraaA LaurentR Delavaux-NicotB HajjajiM Dendrimers and hyper-branched polymers interacting with clays: Fruitful associations for functional materials J Mater Chem A 2019 7 34 19634 50 10.1039/C9TA05718H Search in Google Scholar

Pourjavadi A, Rahemipoor S, Kohestanian M. Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposites with core-shell structure via RAFT polymerization. Compos Sci Technol, 2020;188:107951. PourjavadiA RahemipoorS KohestanianM Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposites with core-shell structure via RAFT polymerization Compos Sci Technol 2020 188 107951 10.1016/j.compscitech.2019.107951 Search in Google Scholar

Zhu Y, Egap E. PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites. Polym Chem, 2020;11(5):1018–24. ZhuY EgapE PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites Polym Chem 2020 11 5 1018 24 10.1039/C9PY01604J Search in Google Scholar

György C, Lovett JR, Penfold NJ, Armes SP. Epoxy-functional sterically stabilized diblock copolymer nanoparticles via RAFT aqueous emulsion polymerization: Comparison of two synthetic strategies. Macromol Rapid Commun, 2019;40(2):1800289. GyörgyC LovettJR PenfoldNJ ArmesSP Epoxy-functional sterically stabilized diblock copolymer nanoparticles via RAFT aqueous emulsion polymerization: Comparison of two synthetic strategies Macromol Rapid Commun 2019 40 2 1800289 10.1002/marc.20180028929943444 Search in Google Scholar

Whitfield R, Parkatzidis K, Truong NP, Junkers T, Anastasaki A. Tailoring polymer dispersity by RAFT polymerization: A versatile approach. Chem, 2020;6(6):1340–52. WhitfieldR ParkatzidisK TruongNP JunkersT AnastasakiA Tailoring polymer dispersity by RAFT polymerization: A versatile approach Chem 2020 6 6 1340 52 10.1016/j.chempr.2020.04.020 Search in Google Scholar

Henkel R, Vana P. The influence of RAFT on the microstructure and the mechanical properties of photopolymerized poly (butylacrylate) networks. Macromol Chem Phys, 2014;215(2):182–9. HenkelR VanaP The influence of RAFT on the microstructure and the mechanical properties of photopolymerized poly (butylacrylate) networks Macromol Chem Phys 2014 215 2 182 9 10.1002/macp.201300581 Search in Google Scholar

Masuda T, Takai M. Structure and properties of thermoresponsive gels formed by RAFT polymerization: Effect of the RAFT agent content. Polym J, 2020;52(12):1407–12. MasudaT TakaiM Structure and properties of thermoresponsive gels formed by RAFT polymerization: Effect of the RAFT agent content Polym J 2020 52 12 1407 12 10.1038/s41428-020-00401-x Search in Google Scholar

Shi X, Zhang J, Corrigan N, Boyer C. PET-RAFT facilitated 3D printable resins with multifunctional RAFT agents. Mater Chem Front, 2021;5(5):2271–82. ShiX ZhangJ CorriganN BoyerC PET-RAFT facilitated 3D printable resins with multifunctional RAFT agents Mater Chem Front 2021 5 5 2271 82 10.1039/D0QM00961J Search in Google Scholar

Benaddi AO, Cohen O, Matyjaszewski K, Silverstein MS. RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. Polymer, 2021;213:123327. BenaddiAO CohenO MatyjaszewskiK SilversteinMS RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes Polymer 2021 213 123327 10.1016/j.polymer.2020.123327 Search in Google Scholar

Kalambate PK, Huang DZ, Li Y, Shen Y, Xie M, Huang Y, et al. Core@ shell nanomaterials based sensing devices: A review. TrAC Trends Anal Chem, 2019;115:147–61. KalambatePK HuangDZ LiY ShenY XieM HuangY Core@ shell nanomaterials based sensing devices: A review TrAC Trends Anal Chem 2019 115 147 61 10.1016/j.trac.2019.04.002 Search in Google Scholar

Platt L, Kelly L, Rimmer S. Controlled delivery of cytokine growth factors mediated by core-shell particles with poly (acrylamidomethylpropane sulphonate) shells. J Mater Chem B, 2014;2(5):494–501. PlattL KellyL RimmerS Controlled delivery of cytokine growth factors mediated by core-shell particles with poly (acrylamidomethylpropane sulphonate) shells J Mater Chem B 2014 2 5 494 501 10.1039/C3TB21208D Search in Google Scholar

Shallcross L, Roche K, Wilcock CJ, Stanton KT, Swift T, Rimmer S, et al. The effect of hyperbranched poly (acrylic acid) s on the morphology and size of precipitated nanoscale (fluor) hydroxyapatite. J Mater Chem B, 2017;5(30):6027–33. ShallcrossL RocheK WilcockCJ StantonKT SwiftT RimmerS The effect of hyperbranched poly (acrylic acid) s on the morphology and size of precipitated nanoscale (fluor) hydroxyapatite J Mater Chem B 2017 5 30 6027 33 10.1039/C7TB00144D Search in Google Scholar

Clara I, Lavanya R, Natchimuthu N. pH and temperature responsive hydrogels of poly (2-acrylamido-2-methyl-1-propanesylfonic acid-co-methacrylic acid): Synthesis and swelling characteristics. J Macromol Sci, Part A, 2016;53(8):492–9. ClaraI LavanyaR NatchimuthuN pH and temperature responsive hydrogels of poly (2-acrylamido-2-methyl-1-propanesylfonic acid-co-methacrylic acid): Synthesis and swelling characteristics J Macromol Sci, Part A 2016 53 8 492 9 10.1080/10601325.2016.1189282 Search in Google Scholar

Erkartal M, Aslan A, Erkilic U, Dadi S, Yazaydin O, Usta H, Sen U. Anhydrous proton conducting poly (vinyl alcohol) (PVA)/poly(2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/1, 2, 4-triazole composite membrane. Int J Hydrogen Energy, 2016;41(26):11321–30. ErkartalM AslanA ErkilicU DadiS YazaydinO UstaH SenU Anhydrous proton conducting poly (vinyl alcohol) (PVA)/poly(2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/1, 2, 4-triazole composite membrane Int J Hydrogen Energy 2016 41 26 11321 30 10.1016/j.ijhydene.2016.04.152 Search in Google Scholar

Feng Y, Xiao CF. Research on butyl methacrylate-lauryl methacrylate copolymeric fibers for oil absorbency. J Appl Polym Sci, 2006;101(3):1248–51. FengY XiaoCF Research on butyl methacrylate-lauryl methacrylate copolymeric fibers for oil absorbency J Appl Polym Sci 2006 101 3 1248 51 10.1002/app.22798 Search in Google Scholar

Qiao J, Hamaya T, Okada T. New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly (vinylalcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs). Polymer, 2005;46(24):10809–16. QiaoJ HamayaT OkadaT New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly (vinylalcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs) Polymer 2005 46 24 10809 16 10.1016/j.polymer.2005.09.007 Search in Google Scholar

Stace SJ, Fellows CM, Moad G, Keddie DJ. Effect of the Z-and macro R-group on the thermal desulfurization of polymers synthesized with acid/base “Switchable” dithiocarbonate RAFT agents. Macromol Rapid Commun, 2018;39(19):1800228. StaceSJ FellowsCM MoadG KeddieDJ Effect of the Z-and macro R-group on the thermal desulfurization of polymers synthesized with acid/base “Switchable” dithiocarbonate RAFT agents Macromol Rapid Commun 2018 39 19 1800228 10.1002/marc.20180022829748984 Search in Google Scholar

Cotton FA, Wilkinson G, Murillo CA, Bochmann M, Grimes R. Advanced inorganic chemistry. Wiley: New York; 1988. CottonFA WilkinsonG MurilloCA BochmannM GrimesR Advanced inorganic chemistry Wiley New York 1988 Search in Google Scholar

Erkartal M, Usta H, Citir M, Sen U. Proton conducting poly (vinyl alcohol)(PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane. J Membrane Sci, 2016;499:156–63. ErkartalM UstaH CitirM SenU Proton conducting poly (vinyl alcohol)(PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane J Membrane Sci 2016 499 156 63 10.1016/j.memsci.2015.10.032 Search in Google Scholar

Novakovic K, Katsikas L, Popovic IG. The thermal degradation of poly (iso-butyl methacrylate) and poly (sec-butyl methacrylate). J Serbian Chem Soc (Yugoslavia), 2000;65(12):867–75. NovakovicK KatsikasL PopovicIG The thermal degradation of poly (iso-butyl methacrylate) and poly (sec-butyl methacrylate) J Serbian Chem Soc (Yugoslavia) 2000 65 12 867 75 10.2298/JSC0012867N Search in Google Scholar

Herrera-Alonso JM, Sedlakova Z, Marand E. Gas barrier properties of nanocomposites based on in situ polymerized poly (n-butyl methacrylate) in the presence of surface modified montmorillonite. J Membrane Sci, 2010;349(1–2):251–7. Herrera-AlonsoJM SedlakovaZ MarandE Gas barrier properties of nanocomposites based on in situ polymerized poly (n-butyl methacrylate) in the presence of surface modified montmorillonite J Membrane Sci 2010 349 1–2 251 7 10.1016/j.memsci.2009.11.057 Search in Google Scholar

Mohamed OA, Moustafa AB, Mehawed MA, El-Sayed NH. Styrene and butyl methacrylate copolymers and their application in leather finishing. J Appl Polym Sci, 2009;111(3):1488–95. MohamedOA MoustafaAB MehawedMA El-SayedNH Styrene and butyl methacrylate copolymers and their application in leather finishing J Appl Polym Sci 2009 111 3 1488 95 10.1002/app.29022 Search in Google Scholar

Liao YH, Rao MM, Li WS, Yang LT, Zhu BK, Xu R, et al. Fumed silica-doped poly (butyl methacrylatestyrene)-based gel polymer electrolyte for lithium ion battery. J Membrane Sci, 2010;352(1–2):95–9. LiaoYH RaoMM LiWS YangLT ZhuBK XuR Fumed silica-doped poly (butyl methacrylatestyrene)-based gel polymer electrolyte for lithium ion battery J Membrane Sci 2010 352 1–2 95 9 10.1016/j.memsci.2010.01.064 Search in Google Scholar

Song F, Wang Q, Wang T. The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE. Tribol Int, 2016;93:1–0. SongF WangQ WangT The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE Tribol Int 2016 93 1 0 10.1016/j.triboint.2015.09.017 Search in Google Scholar

Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P. Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull, 2017;74(3):671–88. SuhailathK RamesanMT NaufalB PeriyatP JasnaVC JayakrishnanP Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites Polym Bull 2017 74 3 671 88 10.1007/s00289-016-1737-9 Search in Google Scholar

Boroujeni KP, Tohidiyan Z, Fadavi A, Eskandari MM, Shahsanaei HA. Synthesis and catalytic application of poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) grafted on graphene oxide. ChemistrySelect, 2019;4(26):7734–44. BoroujeniKP TohidiyanZ FadaviA EskandariMM ShahsanaeiHA Synthesis and catalytic application of poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) grafted on graphene oxide ChemistrySelect 2019 4 26 7734 44 10.1002/slct.201900695 Search in Google Scholar

Zhang L, Gao H, Liao Y. Preparation and application of poly(AMPS-co-DVB) to remove Rhodamine B from aqueous solutions. React Funct Polym, 2016;104:53–61. ZhangL GaoH LiaoY Preparation and application of poly(AMPS-co-DVB) to remove Rhodamine B from aqueous solutions React Funct Polym 2016 104 53 61 10.1016/j.reactfunctpolym.2016.05.001 Search in Google Scholar

eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties