Accès libre

Characterization study of polyAMPS@BMA core-shell particles using two types of RAFT agents

À propos de cet article

Citez

Yang H, Qi D, Liu Z, Chandran BK, Wang T, Yu J, et al. Soft thermal sensor with mechanical adaptability. Adv Mater. 2016;28(41):9175–81. YangH QiD LiuZ ChandranBK WangT YuJ Soft thermal sensor with mechanical adaptability Adv Mater 2016 28 41 9175 81 10.1002/adma.201602994 Search in Google Scholar

Kozlovskaya V, Xue B, Kharlampieva E. shape-adaptable polymeric particles for controlled delivery. Macromolecules 2016:49(22):8373–8386. KozlovskayaV XueB KharlampievaE shape-adaptable polymeric particles for controlled delivery Macromolecules 2016 49 22 8373 8386 10.1021/acs.macromol.6b01740 Search in Google Scholar

Feldman D. Polymer nanocomposites in medicine. J Macromol Sci. 2016;53(1):55–62. FeldmanD Polymer nanocomposites in medicine J Macromol Sci 2016 53 1 55 62 10.1080/10601325.2016.1110459 Search in Google Scholar

Bag MA, Valenzuela LM. Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review. Int J Mol Sci. 2017;18(8):1422. BagMA ValenzuelaLM Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review Int J Mol Sci 2017 18 8 1422 10.3390/ijms18081422 Search in Google Scholar

Parhi R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv Pharm Bull. 2017;7(4):515–30. ParhiR Cross-linked hydrogel for pharmaceutical applications: A review Adv Pharm Bull 2017 7 4 515 30 10.15171/apb.2017.064 Search in Google Scholar

Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol. 2016;48:40–50. HamedI ÖzogulF RegensteinJM Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review Trends Food Sci Technol 2016 48 40 50 10.1016/j.tifs.2015.11.007 Search in Google Scholar

Wang X. Review of characterization methods for water-soluble polymers used in oil sand and heavy oil industrial applications. Environ Rev. 2016;24(4):460–70. WangX Review of characterization methods for water-soluble polymers used in oil sand and heavy oil industrial applications Environ Rev 2016 24 4 460 70 10.1139/er-2015-0094 Search in Google Scholar

Matyjaszewski K, Spanswick J. Controlled/living radical polymerization. Mater Today. 2005l;8(3):26–33. MatyjaszewskiK SpanswickJ Controlled/living radical polymerization Mater Today 2005l 8 3 26 33 10.1016/S1369-7021(05)00745-5 Search in Google Scholar

Moad G. A critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization. J Polym Sci Part A. 2019;57(3):216–27. MoadG A critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization J Polym Sci Part A 2019 57 3 216 27 10.1002/pola.29199 Search in Google Scholar

Keddie DJ, Moad G, Rizzardo E, Thang SH. RAFT agent design and synthesis. Macromolecules. 2012;45(13):5321–42. KeddieDJ MoadG RizzardoE ThangSH RAFT agent design and synthesis Macromolecules 2012 45 13 5321 42 10.1021/ma300410v Search in Google Scholar

Barner-Kowollik C, Davis TP, Stenzel MH. Synthesis of star polymers using RAFT polymerization: What is possible? Aust J Chem, 2006;59(10):719–27. Barner-KowollikC DavisTP StenzelMH Synthesis of star polymers using RAFT polymerization: What is possible? Aust J Chem 2006 59 10 719 27 10.1071/CH06297 Search in Google Scholar

Lewis RW, Malic N, Saito K, Evans RA, Cameron NR. Ultra-high molecular weight linear coordination polymers with terpyridine ligands. Chem Sci, 2019;10(24):6174–83. LewisRW MalicN SaitoK EvansRA CameronNR Ultra-high molecular weight linear coordination polymers with terpyridine ligands Chem Sci 2019 10 24 6174 83 10.1039/C9SC01115C658588431360424 Search in Google Scholar

Caminade AM, Beraa A, Laurent R, Delavaux-Nicot B, Hajjaji M. Dendrimers and hyper-branched polymers interacting with clays: Fruitful associations for functional materials. J Mater Chem A, 2019;7(34):19634–50. CaminadeAM BeraaA LaurentR Delavaux-NicotB HajjajiM Dendrimers and hyper-branched polymers interacting with clays: Fruitful associations for functional materials J Mater Chem A 2019 7 34 19634 50 10.1039/C9TA05718H Search in Google Scholar

Pourjavadi A, Rahemipoor S, Kohestanian M. Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposites with core-shell structure via RAFT polymerization. Compos Sci Technol, 2020;188:107951. PourjavadiA RahemipoorS KohestanianM Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposites with core-shell structure via RAFT polymerization Compos Sci Technol 2020 188 107951 10.1016/j.compscitech.2019.107951 Search in Google Scholar

Zhu Y, Egap E. PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites. Polym Chem, 2020;11(5):1018–24. ZhuY EgapE PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs photocatalysts to make polymer nanocomposites Polym Chem 2020 11 5 1018 24 10.1039/C9PY01604J Search in Google Scholar

György C, Lovett JR, Penfold NJ, Armes SP. Epoxy-functional sterically stabilized diblock copolymer nanoparticles via RAFT aqueous emulsion polymerization: Comparison of two synthetic strategies. Macromol Rapid Commun, 2019;40(2):1800289. GyörgyC LovettJR PenfoldNJ ArmesSP Epoxy-functional sterically stabilized diblock copolymer nanoparticles via RAFT aqueous emulsion polymerization: Comparison of two synthetic strategies Macromol Rapid Commun 2019 40 2 1800289 10.1002/marc.20180028929943444 Search in Google Scholar

Whitfield R, Parkatzidis K, Truong NP, Junkers T, Anastasaki A. Tailoring polymer dispersity by RAFT polymerization: A versatile approach. Chem, 2020;6(6):1340–52. WhitfieldR ParkatzidisK TruongNP JunkersT AnastasakiA Tailoring polymer dispersity by RAFT polymerization: A versatile approach Chem 2020 6 6 1340 52 10.1016/j.chempr.2020.04.020 Search in Google Scholar

Henkel R, Vana P. The influence of RAFT on the microstructure and the mechanical properties of photopolymerized poly (butylacrylate) networks. Macromol Chem Phys, 2014;215(2):182–9. HenkelR VanaP The influence of RAFT on the microstructure and the mechanical properties of photopolymerized poly (butylacrylate) networks Macromol Chem Phys 2014 215 2 182 9 10.1002/macp.201300581 Search in Google Scholar

Masuda T, Takai M. Structure and properties of thermoresponsive gels formed by RAFT polymerization: Effect of the RAFT agent content. Polym J, 2020;52(12):1407–12. MasudaT TakaiM Structure and properties of thermoresponsive gels formed by RAFT polymerization: Effect of the RAFT agent content Polym J 2020 52 12 1407 12 10.1038/s41428-020-00401-x Search in Google Scholar

Shi X, Zhang J, Corrigan N, Boyer C. PET-RAFT facilitated 3D printable resins with multifunctional RAFT agents. Mater Chem Front, 2021;5(5):2271–82. ShiX ZhangJ CorriganN BoyerC PET-RAFT facilitated 3D printable resins with multifunctional RAFT agents Mater Chem Front 2021 5 5 2271 82 10.1039/D0QM00961J Search in Google Scholar

Benaddi AO, Cohen O, Matyjaszewski K, Silverstein MS. RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. Polymer, 2021;213:123327. BenaddiAO CohenO MatyjaszewskiK SilversteinMS RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes Polymer 2021 213 123327 10.1016/j.polymer.2020.123327 Search in Google Scholar

Kalambate PK, Huang DZ, Li Y, Shen Y, Xie M, Huang Y, et al. Core@ shell nanomaterials based sensing devices: A review. TrAC Trends Anal Chem, 2019;115:147–61. KalambatePK HuangDZ LiY ShenY XieM HuangY Core@ shell nanomaterials based sensing devices: A review TrAC Trends Anal Chem 2019 115 147 61 10.1016/j.trac.2019.04.002 Search in Google Scholar

Platt L, Kelly L, Rimmer S. Controlled delivery of cytokine growth factors mediated by core-shell particles with poly (acrylamidomethylpropane sulphonate) shells. J Mater Chem B, 2014;2(5):494–501. PlattL KellyL RimmerS Controlled delivery of cytokine growth factors mediated by core-shell particles with poly (acrylamidomethylpropane sulphonate) shells J Mater Chem B 2014 2 5 494 501 10.1039/C3TB21208D Search in Google Scholar

Shallcross L, Roche K, Wilcock CJ, Stanton KT, Swift T, Rimmer S, et al. The effect of hyperbranched poly (acrylic acid) s on the morphology and size of precipitated nanoscale (fluor) hydroxyapatite. J Mater Chem B, 2017;5(30):6027–33. ShallcrossL RocheK WilcockCJ StantonKT SwiftT RimmerS The effect of hyperbranched poly (acrylic acid) s on the morphology and size of precipitated nanoscale (fluor) hydroxyapatite J Mater Chem B 2017 5 30 6027 33 10.1039/C7TB00144D Search in Google Scholar

Clara I, Lavanya R, Natchimuthu N. pH and temperature responsive hydrogels of poly (2-acrylamido-2-methyl-1-propanesylfonic acid-co-methacrylic acid): Synthesis and swelling characteristics. J Macromol Sci, Part A, 2016;53(8):492–9. ClaraI LavanyaR NatchimuthuN pH and temperature responsive hydrogels of poly (2-acrylamido-2-methyl-1-propanesylfonic acid-co-methacrylic acid): Synthesis and swelling characteristics J Macromol Sci, Part A 2016 53 8 492 9 10.1080/10601325.2016.1189282 Search in Google Scholar

Erkartal M, Aslan A, Erkilic U, Dadi S, Yazaydin O, Usta H, Sen U. Anhydrous proton conducting poly (vinyl alcohol) (PVA)/poly(2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/1, 2, 4-triazole composite membrane. Int J Hydrogen Energy, 2016;41(26):11321–30. ErkartalM AslanA ErkilicU DadiS YazaydinO UstaH SenU Anhydrous proton conducting poly (vinyl alcohol) (PVA)/poly(2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/1, 2, 4-triazole composite membrane Int J Hydrogen Energy 2016 41 26 11321 30 10.1016/j.ijhydene.2016.04.152 Search in Google Scholar

Feng Y, Xiao CF. Research on butyl methacrylate-lauryl methacrylate copolymeric fibers for oil absorbency. J Appl Polym Sci, 2006;101(3):1248–51. FengY XiaoCF Research on butyl methacrylate-lauryl methacrylate copolymeric fibers for oil absorbency J Appl Polym Sci 2006 101 3 1248 51 10.1002/app.22798 Search in Google Scholar

Qiao J, Hamaya T, Okada T. New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly (vinylalcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs). Polymer, 2005;46(24):10809–16. QiaoJ HamayaT OkadaT New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly (vinylalcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs) Polymer 2005 46 24 10809 16 10.1016/j.polymer.2005.09.007 Search in Google Scholar

Stace SJ, Fellows CM, Moad G, Keddie DJ. Effect of the Z-and macro R-group on the thermal desulfurization of polymers synthesized with acid/base “Switchable” dithiocarbonate RAFT agents. Macromol Rapid Commun, 2018;39(19):1800228. StaceSJ FellowsCM MoadG KeddieDJ Effect of the Z-and macro R-group on the thermal desulfurization of polymers synthesized with acid/base “Switchable” dithiocarbonate RAFT agents Macromol Rapid Commun 2018 39 19 1800228 10.1002/marc.20180022829748984 Search in Google Scholar

Cotton FA, Wilkinson G, Murillo CA, Bochmann M, Grimes R. Advanced inorganic chemistry. Wiley: New York; 1988. CottonFA WilkinsonG MurilloCA BochmannM GrimesR Advanced inorganic chemistry Wiley New York 1988 Search in Google Scholar

Erkartal M, Usta H, Citir M, Sen U. Proton conducting poly (vinyl alcohol)(PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane. J Membrane Sci, 2016;499:156–63. ErkartalM UstaH CitirM SenU Proton conducting poly (vinyl alcohol)(PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane J Membrane Sci 2016 499 156 63 10.1016/j.memsci.2015.10.032 Search in Google Scholar

Novakovic K, Katsikas L, Popovic IG. The thermal degradation of poly (iso-butyl methacrylate) and poly (sec-butyl methacrylate). J Serbian Chem Soc (Yugoslavia), 2000;65(12):867–75. NovakovicK KatsikasL PopovicIG The thermal degradation of poly (iso-butyl methacrylate) and poly (sec-butyl methacrylate) J Serbian Chem Soc (Yugoslavia) 2000 65 12 867 75 10.2298/JSC0012867N Search in Google Scholar

Herrera-Alonso JM, Sedlakova Z, Marand E. Gas barrier properties of nanocomposites based on in situ polymerized poly (n-butyl methacrylate) in the presence of surface modified montmorillonite. J Membrane Sci, 2010;349(1–2):251–7. Herrera-AlonsoJM SedlakovaZ MarandE Gas barrier properties of nanocomposites based on in situ polymerized poly (n-butyl methacrylate) in the presence of surface modified montmorillonite J Membrane Sci 2010 349 1–2 251 7 10.1016/j.memsci.2009.11.057 Search in Google Scholar

Mohamed OA, Moustafa AB, Mehawed MA, El-Sayed NH. Styrene and butyl methacrylate copolymers and their application in leather finishing. J Appl Polym Sci, 2009;111(3):1488–95. MohamedOA MoustafaAB MehawedMA El-SayedNH Styrene and butyl methacrylate copolymers and their application in leather finishing J Appl Polym Sci 2009 111 3 1488 95 10.1002/app.29022 Search in Google Scholar

Liao YH, Rao MM, Li WS, Yang LT, Zhu BK, Xu R, et al. Fumed silica-doped poly (butyl methacrylatestyrene)-based gel polymer electrolyte for lithium ion battery. J Membrane Sci, 2010;352(1–2):95–9. LiaoYH RaoMM LiWS YangLT ZhuBK XuR Fumed silica-doped poly (butyl methacrylatestyrene)-based gel polymer electrolyte for lithium ion battery J Membrane Sci 2010 352 1–2 95 9 10.1016/j.memsci.2010.01.064 Search in Google Scholar

Song F, Wang Q, Wang T. The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE. Tribol Int, 2016;93:1–0. SongF WangQ WangT The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE Tribol Int 2016 93 1 0 10.1016/j.triboint.2015.09.017 Search in Google Scholar

Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P. Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull, 2017;74(3):671–88. SuhailathK RamesanMT NaufalB PeriyatP JasnaVC JayakrishnanP Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites Polym Bull 2017 74 3 671 88 10.1007/s00289-016-1737-9 Search in Google Scholar

Boroujeni KP, Tohidiyan Z, Fadavi A, Eskandari MM, Shahsanaei HA. Synthesis and catalytic application of poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) grafted on graphene oxide. ChemistrySelect, 2019;4(26):7734–44. BoroujeniKP TohidiyanZ FadaviA EskandariMM ShahsanaeiHA Synthesis and catalytic application of poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) grafted on graphene oxide ChemistrySelect 2019 4 26 7734 44 10.1002/slct.201900695 Search in Google Scholar

Zhang L, Gao H, Liao Y. Preparation and application of poly(AMPS-co-DVB) to remove Rhodamine B from aqueous solutions. React Funct Polym, 2016;104:53–61. ZhangL GaoH LiaoY Preparation and application of poly(AMPS-co-DVB) to remove Rhodamine B from aqueous solutions React Funct Polym 2016 104 53 61 10.1016/j.reactfunctpolym.2016.05.001 Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais