[
1. Yuan, H., Fauroux, J.–Ch., Chapelle, F., & Balandraud, X. (2017). A Review of Rotary Actuators Based on Shape Memory Alloys. Journal of Intelligent Material Systems and Structures, 28 (14), 1863–1885, DOI: org/10.1177/1045389X16682848
]Otwórz DOISearch in Google Scholar
[
2. Lavakumar, A. (2017). Mechanical Properties of Materials. Concepts in Physical Metallurgy, 4, 5–22. https://doi.org/10.1088/978-1-6817-4473-5ch510.1088/978-1-6817-4473-5ch5
]Search in Google Scholar
[
3. Нuliieva, N. M., Somov, D. O., Pasternak, V. V., Samchuk L. M., & Chetverzhuk, T. I. (2020). The Selection of Boron Nitride Circles for Grinding Saponite – Titanium Composites Using Non-Parametric Method. Latvian Journal of Physics and Technical Sciences, 57 (6), 68–77. DOI: 10.2478/lpts-2020-0033
]Otwórz DOISearch in Google Scholar
[
4. Tahara, M., Kim, H. Yo., Hosoda, H., & Miyazaki, Sh. (2009). Shape Memory Effect and Cyclic Deformation Behavior of Ti–Nb–N Alloys. Functional Materials Letters, 2 (2), 79–82. DOI: org/10.1142/S1793604709000600
]Otwórz DOISearch in Google Scholar
[
5. Sun, Q., Cao, B., Iwamoto, T., & Suo, T. (2021). Effect of Impact Deformation on Shape Recovery Behavior in Fe-Mn-Si Shape Memory Alloy under Shape Memory Training Process with Cyclic Thermo-Mechanical Loading. Science China Technological Sciences. DOI: org/10.1007/s11431-020-1759-y
]Otwórz DOISearch in Google Scholar
[
6. Zabolotnyi, O., Pasternak, V., Ilchuk, N., Huliieva, N., & Cagáňová, D. (2021). Powder technology and software tools for microstructure control of AlCu2 samples. In: Proceedings of the 4th Int. Conf. on Design, Simulation and Manufacturing: The Innovation Exchange, DSMIE-2021 (pp. 585–593), 8–11 June 2021. Lviv, Ukraine: Manufacturing and Materials Engineering: Springer.
]Search in Google Scholar
[
7. Ohki, T., Ni, Q.-Q., Ohsako, N., & Iwamoto, M. (2004). Mechanical and Shape Memory Behavior of Composites with Shape Memory Polymer. Composites Part A: Applied Science and Manufacturing, 35 (9), 1065–1073. DOI:org/10.1016/j.compositesa.2004.03.001
]Otwórz DOISearch in Google Scholar
[
8. Murasawa, G., Tohgo, K., & Ishii, H. (2004). Deformation Behavior of NiTi /Polymer Shape Memory Alloy Composites – Experimental Verifications. Journal of Composite Materials, 38 (5), 399–416. DOI: org/10.1177/0021998304040553
]Otwórz DOISearch in Google Scholar
[
9. Turov, V., Tryasuchev, L., Klochko, V., & Zvonytsky V. (2008). IPC Tensile Testing Device. N 33345. Database of Patents of Ukraine. Available at https://uapatents.com/3-33345-pristrijj-dlya-viprobuvannya-naroztyag-stisk.html
]Search in Google Scholar
[
10. Sheldon, B.W., Rajamani, A., Bhandari, A., Chason, E., Hong, S.K., & Beresford, R. (2005). Competition between Tensile and Compressive Stress Mechanisms during Volmer-Weber Growth of Aluminum Nitride Films. Journal of Applied Physics, 98, 043509. DOI:org/10.1063/1.1994944
]Otwórz DOISearch in Google Scholar
[
11. Patent of Ukraine 91287, IPC B22F 3/23 (2006.01) C01G 1/00 (2014.01). Reactor for Self-propagating High-Temperature Synthesis (SHS process). L. Samchuk, N. Guliyeva, V. Rud, O. Povstyanoy, I. Savyuk, Yu. Vorobey, M. Zaikin. Lutsk National Technical University, Lutsk, 25.06.14, 12.
]Search in Google Scholar
[
12. Rud, V., Samchuk, L., & Guliieva, N. (2014). Application of Pyrometric Technique for Imaging of Front SHS Burning. Bulletin of Vinnytsia Polytechnic Institute: Mechanical Engineering and Transport. Vinnitsa, 6, 97–101.
]Search in Google Scholar
[
13. Shmyg, R., Boyarchuk, V., Dobryansky, I., Barabash V., & Schmig, R.A. (2010). Measurement Error. Terminological Dictionary-Reference Book on Construction and Architecture. Lviv, 159.
]Search in Google Scholar
[
14. Standard. (2017). ISO 12106:2017. Metallic Materials. Fatigue Testing. Axial-Strain-Controlled Method, 38.
]Search in Google Scholar
[
15. Anwar, N., & Najam, F. (2017). Chapter Three – Axial-Flexual Response of Cross-Sections. Structural Cross Sections Analysis and Design, 137–249.10.1016/B978-0-12-804443-8.00003-8
]Search in Google Scholar
[
16. Huliieva, N. (2019). Exposure to Saponite-Titanium Composite with Subsequent Deformation of Intense Plastic Torsional Deformation. Abstracts of the VI Scientific Conference Nanoscale Systems: Structure, Properties, Technologies (pp. 3–6), Kyiv: NANSIS 2019.
]Search in Google Scholar
[
17. Нuliieva, N., Pasternak, V., & Samchuk, L. (2020). Application of deep sanding method of saponite – titanium blanks. In: VI International Scientific and Practical Conference Scientific Achievements of Modern Society (p. 119), 5–7 February 2020. Liverpool: UK.
]Search in Google Scholar
[
18. Sheremetyev, V., Prokoshkin, S., Brailovski, V., & Dubinskiy, S. (2015). Investigation of the Structure Stability and Superelastic Behavior of Thermomechanically Treated Ti-Nb-Zr and Ti-Nb-Ta Shape-Memory Alloys. The Physics of Metals and Metallography, 116 (4), 413–422. DOI: 10.1134/S0031918X15040158
]Otwórz DOISearch in Google Scholar
[
19. Ropyak, L., & Velichkovych, A. (2016). Investigation of the Stress State of a Multifunctional Coating during Stretching or Torsion. Kyiv: KPI them. Igor Sikorsky, 194–196.
]Search in Google Scholar
[
20. Gomatam, R., & Sancaktar, E. (2006). The Effects of Stress State, Loading Frequency and Cyclic Waveforms on the Fatigue Behavior of Silver-Filled Electronically-Conductive Adhesive Joints. January Journal of Adhesion Science and Technology, 20 (1), 53–68. DOI: 10.1163/156856106775212378.
]Otwórz DOISearch in Google Scholar
[
21. Ma, Z., Zhao, H., & Liu, Ch. (2021). Prediction Method of Low Cyclic Stress-Strain Curve of Structural Materials. Materials Transactions, 56 (7), 1067–1071. DOI: 10.2320/matertrans. M2015085]
]Otwórz DOISearch in Google Scholar
[
22. Gooch, Ja. (2011). Cyclic Stress Strain. Encyclopedic Dictionary of Polymers, 189–189. DOI: 10.1007/978-1-4419-6247-8_3235
]Otwórz DOISearch in Google Scholar
[
23. Kelly, Ja. (2017). Shear Deformation and the Buckling of Columns, Revisited. Civil Eng Res J. 2 (1), 555579. DOI: 10.19080/CERJ.2017.02.555579
]Otwórz DOISearch in Google Scholar
[
24. Herrmann, H., & Bucksch, H. (1991). Shear deformation. Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 2633–3379. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-41714-6_192792
]Otwórz DOISearch in Google Scholar
[
25. Bhaskar, K., & Varadan, T. (2021). Shear Deformation Theories (pp. 181–195). In: Plates. Springer, Cham. DOI: org/10.1007/978-3-030-69424-1_11
]Otwórz DOISearch in Google Scholar
[
26. Casati, R., Vedani, M., & Tuissi A. (2014). Thermal Cycling of Stress-Induced Martensite for High-Performance Shape Memory Effect. Scripta Materialia, 80, 13–16. DOI: 10.1016/j. scriptamat.2014.02.003
]Otwórz DOISearch in Google Scholar
[
27. Lázpita, P., Villa, E., Villa, F., & Chernenko, V. (2021). Temperature Dependent Stress–Strain Behavior and Martensite Stabilization in Magnetic Shape Memory Ni51.1Fe16.4Ga26.3Co6.2. Single Crystal Metals, 11, 920. DOI: org/10.3390/met11060920
]Otwórz DOISearch in Google Scholar
[
28. Müllner, P., Chernenko, V., & Kostorz, G. (2004). Large Cyclic Magnetic-Field-Induced Deformation in Orthorhombic (14M) Ni–Mn– Ga Martensite. J. Appl. Phys, 95, 1531–1536.10.1063/1.1639144
]Search in Google Scholar
[
29. Pagounis, E., & Muellner, P. (2018). Materials and actuator solutions for advanced magnetic shape memory devices. In: Proceedings of the ACTUATOR 2018, 16th International Conference on New Actuators (pp. 1–7), 25–27 June 2018. Bremen, Germany.
]Search in Google Scholar
[
30. Kustov, S., Pons, J., Cesari, E., & Van Humbeeck, J. (2004). Chemical and Mechanical Stabilization of Martensite. Acta Mater, 52, 4547–4559.10.1016/j.actamat.2004.06.012
]Search in Google Scholar
[
31. Samy, N., Daróczi, L., Tóth, L., Panchenko, E., Chumlyakov, Y., Surikov, N., & Beke, D. (2020). Effect of Stress-Induced Martensite Stabilization on Acoustic Emission Characteristics and the Entropy of Martensitic Transformation in Shape Memory Ni51Fe18Ga27Co4 Single Crystal. Metals, 10, 534.10.3390/met10040534
]Search in Google Scholar
[
32. Roytburd, A. (2000). Intrinsic Hysteresis of Superelastic Deformation. Mater. Sci. Forum, 389–392.10.4028/www.scientific.net/MSF.327-328.389
]Search in Google Scholar