Otwarty dostęp

Isothermal Mechanical Cycling of Saponite–Titanium Composites in Conditions of Complex Stressed State


Zacytuj

1. Yuan, H., Fauroux, J.–Ch., Chapelle, F., & Balandraud, X. (2017). A Review of Rotary Actuators Based on Shape Memory Alloys. Journal of Intelligent Material Systems and Structures, 28 (14), 1863–1885, DOI: org/10.1177/1045389X16682848 Open DOISearch in Google Scholar

2. Lavakumar, A. (2017). Mechanical Properties of Materials. Concepts in Physical Metallurgy, 4, 5–22. https://doi.org/10.1088/978-1-6817-4473-5ch510.1088/978-1-6817-4473-5ch5 Search in Google Scholar

3. Нuliieva, N. M., Somov, D. O., Pasternak, V. V., Samchuk L. M., & Chetverzhuk, T. I. (2020). The Selection of Boron Nitride Circles for Grinding Saponite – Titanium Composites Using Non-Parametric Method. Latvian Journal of Physics and Technical Sciences, 57 (6), 68–77. DOI: 10.2478/lpts-2020-0033 Open DOISearch in Google Scholar

4. Tahara, M., Kim, H. Yo., Hosoda, H., & Miyazaki, Sh. (2009). Shape Memory Effect and Cyclic Deformation Behavior of Ti–Nb–N Alloys. Functional Materials Letters, 2 (2), 79–82. DOI: org/10.1142/S1793604709000600 Open DOISearch in Google Scholar

5. Sun, Q., Cao, B., Iwamoto, T., & Suo, T. (2021). Effect of Impact Deformation on Shape Recovery Behavior in Fe-Mn-Si Shape Memory Alloy under Shape Memory Training Process with Cyclic Thermo-Mechanical Loading. Science China Technological Sciences. DOI: org/10.1007/s11431-020-1759-y Open DOISearch in Google Scholar

6. Zabolotnyi, O., Pasternak, V., Ilchuk, N., Huliieva, N., & Cagáňová, D. (2021). Powder technology and software tools for microstructure control of AlCu2 samples. In: Proceedings of the 4th Int. Conf. on Design, Simulation and Manufacturing: The Innovation Exchange, DSMIE-2021 (pp. 585–593), 8–11 June 2021. Lviv, Ukraine: Manufacturing and Materials Engineering: Springer.10.1007/978-3-030-77719-7_58 Search in Google Scholar

7. Ohki, T., Ni, Q.-Q., Ohsako, N., & Iwamoto, M. (2004). Mechanical and Shape Memory Behavior of Composites with Shape Memory Polymer. Composites Part A: Applied Science and Manufacturing, 35 (9), 1065–1073. DOI:org/10.1016/j.compositesa.2004.03.001 Open DOISearch in Google Scholar

8. Murasawa, G., Tohgo, K., & Ishii, H. (2004). Deformation Behavior of NiTi /Polymer Shape Memory Alloy Composites – Experimental Verifications. Journal of Composite Materials, 38 (5), 399–416. DOI: org/10.1177/0021998304040553 Open DOISearch in Google Scholar

9. Turov, V., Tryasuchev, L., Klochko, V., & Zvonytsky V. (2008). IPC Tensile Testing Device. N 33345. Database of Patents of Ukraine. Available at https://uapatents.com/3-33345-pristrijj-dlya-viprobuvannya-naroztyag-stisk.html Search in Google Scholar

10. Sheldon, B.W., Rajamani, A., Bhandari, A., Chason, E., Hong, S.K., & Beresford, R. (2005). Competition between Tensile and Compressive Stress Mechanisms during Volmer-Weber Growth of Aluminum Nitride Films. Journal of Applied Physics, 98, 043509. DOI:org/10.1063/1.1994944 Open DOISearch in Google Scholar

11. Patent of Ukraine 91287, IPC B22F 3/23 (2006.01) C01G 1/00 (2014.01). Reactor for Self-propagating High-Temperature Synthesis (SHS process). L. Samchuk, N. Guliyeva, V. Rud, O. Povstyanoy, I. Savyuk, Yu. Vorobey, M. Zaikin. Lutsk National Technical University, Lutsk, 25.06.14, 12. Search in Google Scholar

12. Rud, V., Samchuk, L., & Guliieva, N. (2014). Application of Pyrometric Technique for Imaging of Front SHS Burning. Bulletin of Vinnytsia Polytechnic Institute: Mechanical Engineering and Transport. Vinnitsa, 6, 97–101. Search in Google Scholar

13. Shmyg, R., Boyarchuk, V., Dobryansky, I., Barabash V., & Schmig, R.A. (2010). Measurement Error. Terminological Dictionary-Reference Book on Construction and Architecture. Lviv, 159. Search in Google Scholar

14. Standard. (2017). ISO 12106:2017. Metallic Materials. Fatigue Testing. Axial-Strain-Controlled Method, 38. Search in Google Scholar

15. Anwar, N., & Najam, F. (2017). Chapter Three – Axial-Flexual Response of Cross-Sections. Structural Cross Sections Analysis and Design, 137–249.10.1016/B978-0-12-804443-8.00003-8 Search in Google Scholar

16. Huliieva, N. (2019). Exposure to Saponite-Titanium Composite with Subsequent Deformation of Intense Plastic Torsional Deformation. Abstracts of the VI Scientific Conference Nanoscale Systems: Structure, Properties, Technologies (pp. 3–6), Kyiv: NANSIS 2019. Search in Google Scholar

17. Нuliieva, N., Pasternak, V., & Samchuk, L. (2020). Application of deep sanding method of saponite – titanium blanks. In: VI International Scientific and Practical Conference Scientific Achievements of Modern Society (p. 119), 5–7 February 2020. Liverpool: UK. Search in Google Scholar

18. Sheremetyev, V., Prokoshkin, S., Brailovski, V., & Dubinskiy, S. (2015). Investigation of the Structure Stability and Superelastic Behavior of Thermomechanically Treated Ti-Nb-Zr and Ti-Nb-Ta Shape-Memory Alloys. The Physics of Metals and Metallography, 116 (4), 413–422. DOI: 10.1134/S0031918X15040158 Open DOISearch in Google Scholar

19. Ropyak, L., & Velichkovych, A. (2016). Investigation of the Stress State of a Multifunctional Coating during Stretching or Torsion. Kyiv: KPI them. Igor Sikorsky, 194–196. Search in Google Scholar

20. Gomatam, R., & Sancaktar, E. (2006). The Effects of Stress State, Loading Frequency and Cyclic Waveforms on the Fatigue Behavior of Silver-Filled Electronically-Conductive Adhesive Joints. January Journal of Adhesion Science and Technology, 20 (1), 53–68. DOI: 10.1163/156856106775212378. Open DOISearch in Google Scholar

21. Ma, Z., Zhao, H., & Liu, Ch. (2021). Prediction Method of Low Cyclic Stress-Strain Curve of Structural Materials. Materials Transactions, 56 (7), 1067–1071. DOI: 10.2320/matertrans. M2015085] Open DOISearch in Google Scholar

22. Gooch, Ja. (2011). Cyclic Stress Strain. Encyclopedic Dictionary of Polymers, 189–189. DOI: 10.1007/978-1-4419-6247-8_3235 Open DOISearch in Google Scholar

23. Kelly, Ja. (2017). Shear Deformation and the Buckling of Columns, Revisited. Civil Eng Res J. 2 (1), 555579. DOI: 10.19080/CERJ.2017.02.555579 Open DOISearch in Google Scholar

24. Herrmann, H., & Bucksch, H. (1991). Shear deformation. Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 2633–3379. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-41714-6_192792 Open DOISearch in Google Scholar

25. Bhaskar, K., & Varadan, T. (2021). Shear Deformation Theories (pp. 181–195). In: Plates. Springer, Cham. DOI: org/10.1007/978-3-030-69424-1_11 Open DOISearch in Google Scholar

26. Casati, R., Vedani, M., & Tuissi A. (2014). Thermal Cycling of Stress-Induced Martensite for High-Performance Shape Memory Effect. Scripta Materialia, 80, 13–16. DOI: 10.1016/j. scriptamat.2014.02.003 Open DOISearch in Google Scholar

27. Lázpita, P., Villa, E., Villa, F., & Chernenko, V. (2021). Temperature Dependent Stress–Strain Behavior and Martensite Stabilization in Magnetic Shape Memory Ni51.1Fe16.4Ga26.3Co6.2. Single Crystal Metals, 11, 920. DOI: org/10.3390/met11060920 Open DOISearch in Google Scholar

28. Müllner, P., Chernenko, V., & Kostorz, G. (2004). Large Cyclic Magnetic-Field-Induced Deformation in Orthorhombic (14M) Ni–Mn– Ga Martensite. J. Appl. Phys, 95, 1531–1536.10.1063/1.1639144 Search in Google Scholar

29. Pagounis, E., & Muellner, P. (2018). Materials and actuator solutions for advanced magnetic shape memory devices. In: Proceedings of the ACTUATOR 2018, 16th International Conference on New Actuators (pp. 1–7), 25–27 June 2018. Bremen, Germany. Search in Google Scholar

30. Kustov, S., Pons, J., Cesari, E., & Van Humbeeck, J. (2004). Chemical and Mechanical Stabilization of Martensite. Acta Mater, 52, 4547–4559.10.1016/j.actamat.2004.06.012 Search in Google Scholar

31. Samy, N., Daróczi, L., Tóth, L., Panchenko, E., Chumlyakov, Y., Surikov, N., & Beke, D. (2020). Effect of Stress-Induced Martensite Stabilization on Acoustic Emission Characteristics and the Entropy of Martensitic Transformation in Shape Memory Ni51Fe18Ga27Co4 Single Crystal. Metals, 10, 534.10.3390/met10040534 Search in Google Scholar

32. Roytburd, A. (2000). Intrinsic Hysteresis of Superelastic Deformation. Mater. Sci. Forum, 389–392.10.4028/www.scientific.net/MSF.327-328.389 Search in Google Scholar

eISSN:
2255-8896
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics